
CIS 341: COMPILERS
Lecture 17

Announcements / Plan

•  HW4: OAT v. 1.0
–  Parsing & basic code generation
–  Due: TONIGHT March 28th

•  HW5: OAT – typechecking, structs, function pointers
–  Available soon
–  Due: Thursday, April 13

•  HW6: LLVM Optimization: analysis and register allocation
–  Due: Wednesday, April 26

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m.

Zdancewic CIS 341: Compilers 2

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers 3

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.�
�

Compiling First-class Functions

•  To implement first-class functions on a processor, there are two
problems:
–  First: we must implement substitution of free variables
–  Second: we must separate ‘code’ from ‘data’

•  Reify the substitution:
–  Move substitution from the meta language to the object language by

making the data structure & lookup operation explicit
–  The environment-based interpreter is one step in this direction

•  Closure Conversion:
–  Eliminates free variables by packaging up the needed environment in the

data structure.

•  Hoisting:
–  Separates code from data, pulling closed code to the top level.

Zdancewic CIS 341: Compilers 4

Example of closure creation
•  Recall the “add” function:�

let add = fun x -> fun y -> x + y

•  Consider the inner function: fun y -> x + y

•  When run the function application: add 4  
the program builds a closure and returns it.
–  The closure is a pair of the environment and a code pointer.

•  The code pointer takes a pair of parameters: env and y
–  The function code is (essentially):�

 fun (env, y) -> let x = nth env 0 in x + y

CIS 341: Compilers 5

ptr Code(env, y, body)

(4) code body

Representing Closures
•  As we saw, the simple closure conversion algorithm doesn’t generate

very efficient code.
–  It stores all the values for variables in the environment, �

even if they aren’t needed by the function body.
–  It copies the environment values each time a nested closure is created.
–  It uses a linked-list datastructure for tuples.

•  There are many options:
–  Store only the values for free variables in the body of the closure.
–  Share subcomponents of the environment to avoid copying
–  Use vectors or arrays rather than linked structures

CIS 341: Compilers 6

Array-based Closures with N-ary Functions
(fun (x y z) ->

(fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z
n,m

p

nil x y z

nxt n m

nxt p +

Closure B

env code

Closure A

Closure B

env code

Closure A

app

1,0

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 nxt�
 ptr then look�
 up index 0”

“follow 2 nxt�
 ptrs then look�
 up index 2”

TYPECHECKING

Zdancewic CIS 341: Compilers 8

�
�

Adding Integers to Lambda Calculus

Zdancewic CIS 341: Compilers 9

exp1 ⇓ n1 exp2 ⇓ n2

exp1 + exp2 ⇓ (n1 ⟦+⟧ n2)

exp ::=
 | …
 | n constant integers
 | exp1 + exp2 binary arithmetic operation

val ::=

 | fun x -> exp functions are values
 | n integers are values

n{v/x} = n constants have no free vars.
(e1 + e2){v/x} = (e1{v/x} + e2{v/x}) substitute everywhere

Object-level ‘+’ Meta-level ‘+’

NOTE: there are no rules for
the case where exp1 or
exp2 evaluate to functions!
The semantics is undefined
in those cases.

Type Checking / Static Analysis
•  Recall the interpreter from the Eval3 module:
let rec eval env e =
 match e with
 | …
 | Add (e1, e2) ->

 (match (eval env e1, eval env e2) with
 | (IntV i1, IntV i2) -> IntV (i1 + i2)
 | _ -> failwith "tried to add non-integers")

 | …

•  The interpreter might fail at runtime.
–  Not all operations are defined for all values (e.g. 3/0, 3 + true, …)

•  A compiler can’t generate sensible �
code for this case.
–  A naïve implementation might “add” an integer and a pointer

CIS 341: Compilers 10

STATICALLY RULING OUT
PARTIALITY: TYPE CHECKING

Zdancewic CIS 341: Compilers 11

�
�

See tc.ml�
�

Notes about this Typechecker
•  In the interpreter, we only evaluate the body of a function when it's

applied.
•  In the typechecker, we always check the body of the function (even if

it's never applied.)
–  We assume the input has some type (say t1) and reflect this in the type of the

function (t1 -> t2).

•  Dually, at a call site (e1 e2), we don't know what closure we're going
to get.
–  But we can calculate e1's type, check that e2 is an argument of the right

type, and also determine what type e1 will return.

•  Question: Why is this an approximation?
•  Question: What if well_typed always returns false?

Type Judgments
•  In the judgment: E ⊢ e : t

–  E is a typing environment or a type context
–  E maps variables to types. It is just a set of bindings of the form: �

x1 : t1, x2 : t2, …, xn : tn

•  For example: x : int, b : bool ⊢ if (b) 3 else x : int

•  What do we need to know to decide whether “if (b) 3 else x” has type
int in the environment x : int, b : bool?
–  b must be a bool i.e. x : int, b : bool ⊢ b : bool
–  3 must be an int i.e. x : int, b : bool ⊢ 3 : int
–  x must be an int i.e. x : int, b : bool ⊢ x : int

CIS 341: Compilers 13

Simply-typed Lambda Calculus
•  For the language in “tc.ml” we have five inference rules:

•  Note how these rules correspond to the code.

CIS 341: Compilers 14

E ⊢ i : int

E ⊢ e1 : int E ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ E

E ⊢ x : T

E, x : T ⊢ e : S

E ⊢ fun (x:T) -> e : T -> S

E ⊢ e1 : T -> S E ⊢ e2 : T

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Type Checking Derivations
•  A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

•  Leaves of the tree are axioms (i.e. rules with no premises)
–  Example: the INT rule is an axiom

•  Goal of the typechecker: verify that such a tree exists.
•  Example: Find a tree for the following program using the inference

rules on the previous slide:
 �

 ⊢ (fun (x:int) -> x + 3) 5 : int

CIS 341: Compilers 15

Example Derivation Tree

•  Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

•  Note that x : int ∈ E is implemented by the function lookup

CIS 341: Compilers 16

⊢ (fun (x:int) -> x + 3) 5 : int

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int

x : int ⊢ x + 3 : int

x : int ⊢ x : int x : int ⊢ 3 : int

x : int ∈ x : int

APP

INT

INT VAR

ADD

FUN

Type Safety
"Well typed programs do not go wrong." !

 – Robin Milner, 1978

•  Note: this is a very strong property.
–  Well-typed programs cannot "go wrong" by trying to execute undefined

code (such as 3 + (fun x -> 2))
–  Simply-typed lambda calculus is guaranteed to terminate! �

(i.e. it isn't Turing complete)

Zdancewic CIS 341: Compilers 17

Theorem: (simply typed lambda calculus with integers)
�
 If ⊢ e : t then there exists a value v such that e ⇓ v .

Type Safety For General Languages

•  Well-defined termination could include:
–  halting with a return value
–  raising an exception

•  Type safety rules out undefined behaviors:
–  abusing "unsafe" casts: converting pointers to integers, etc.
–  treating non-code values as code (and vice-versa)
–  breaking the type abstractions of the language

•  What is "defined" depends on the language semantics…

Zdancewic CIS 341: Compilers 18

Theorem: (Type Safety)
�
 If ⊢ P : t is a well-typed program, then either:
 (a) the program terminates in a well-defined way, or

 (b) the program continues computing forever

