
CIS 341: COMPILERS 
Lecture 17 



Announcements / Plan 
 

•  HW4:  OAT v. 1.0 
–  Parsing & basic code generation 
–  Due: TONIGHT March 28th 

•  HW5: OAT – typechecking, structs, function pointers 
–  Available soon 
–  Due: Thursday, April 13 
 

•  HW6:  LLVM Optimization: analysis and register allocation  
–  Due: Wednesday, April 26 

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m. 
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CLOSURE CONVERSION 
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Compiling lambda calculus to straight-line code. 
Representing evaluation environments at runtime.�
�
 

 
 
 



Compiling First-class Functions 

•  To implement first-class functions on a processor, there are two 
problems: 
–  First: we must implement substitution of free variables 
–  Second: we must separate ‘code’ from ‘data’ 

•  Reify the substitution: 
–  Move substitution from the meta language to the object language by 

making the data structure & lookup operation explicit 
–  The environment-based interpreter is one step in this direction 

•  Closure Conversion:  
–  Eliminates free variables by packaging up the needed environment in the 

data structure. 

•  Hoisting: 
–  Separates code from data, pulling closed code to the top level. 
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Example of closure creation 
•  Recall the “add” function:�

let add = fun x -> fun y -> x + y
 
•  Consider the inner function:  fun y -> x + y

•  When run the function application:  add 4  
the program builds a closure and returns it. 
–  The closure is a pair of the environment and a code pointer. 

•  The code pointer takes a pair of parameters: env and y 
–  The function code is (essentially):�

 fun (env, y) -> let x = nth env 0 in x + y
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ptr Code(env, y, body)

(4) code body 



Representing Closures 
•  As we saw, the simple closure conversion algorithm doesn’t generate  

very efficient code. 
–  It stores all the values for variables in the environment, �

even if they aren’t needed by the function body. 
–  It copies the environment values each time a nested closure is created. 
–  It uses a linked-list datastructure for tuples. 

•  There are many options: 
–  Store only the values for free variables in the body of the closure. 
–  Share subcomponents of the environment to avoid copying 
–  Use vectors or arrays rather than linked structures 
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Array-based Closures with N-ary Functions 
(fun (x y z) ->

(fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z 
n,m 

p 

nil x y z

nxt n m

nxt p +

Closure B 

env code

Closure A 

Closure B 

env code

Closure A 

app

1,0

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.   

“follow 1 nxt�
  ptr then look�
  up index 0” 

“follow 2 nxt�
  ptrs then look�
  up index 2” 



TYPECHECKING 
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Adding Integers to Lambda Calculus 
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exp1 ⇓ n1  exp2 ⇓ n2 
     

exp1 + exp2  ⇓ (n1 ⟦+⟧ n2) 

exp ::=  
 | … 
 | n        constant integers   
 | exp1 + exp2     binary arithmetic operation 

 
val ::=  

 | fun x -> exp     functions are values 
 | n        integers are values 

 
n{v/x}   =  n     constants have no free vars. 
(e1 + e2){v/x}  = (e1{v/x} + e2{v/x})  substitute everywhere 

Object-level ‘+’ Meta-level ‘+’ 

NOTE: there are no rules for  
the case where  exp1 or 
exp2  evaluate to functions! 
The semantics is undefined 
in those cases. 



Type Checking / Static Analysis 
•  Recall the interpreter from the Eval3 module: 
let rec eval env e =
  match e with
  | …
  | Add (e1, e2) ->

  (match (eval env e1, eval env e2) with
     | (IntV i1, IntV i2) -> IntV (i1 + i2)
     | _ -> failwith "tried to add non-integers")

  | …

•  The interpreter might fail at runtime. 
–  Not all operations are defined for all values (e.g. 3/0,  3 + true, …) 

•  A compiler can’t generate sensible �
code for this case. 
–  A naïve implementation might “add” an integer and a pointer 
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STATICALLY RULING OUT 
PARTIALITY: TYPE CHECKING 
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See tc.ml�
�
 

 
 
 



Notes about this Typechecker 
•  In the interpreter, we only evaluate the body of a function when it's 

applied. 
•  In the typechecker, we always check the body of the function (even if 

it's never applied.) 
–  We assume the input has some type (say t1) and reflect this in the type of the 

function (t1 -> t2). 

•  Dually, at a call site (e1 e2), we don't know what closure we're going 
to get.  
–  But we can calculate e1's type, check that e2 is an argument of the right 

type, and also determine what type e1 will return. 

•  Question:  Why is this an approximation? 
•  Question: What if well_typed always returns false? 



Type Judgments 
•  In the judgment:   E ⊢ e : t   

–  E is a typing environment or a type context 
–  E maps variables to types.  It is just a set of bindings of the form:   �

x1 : t1, x2 : t2, …, xn : tn 

•  For example:      x : int, b : bool ⊢ if (b) 3 else x : int 

•  What do we need to know to decide whether “if (b) 3 else x” has type 
int in the environment x : int, b : bool? 
–  b must be a bool   i.e.   x : int, b : bool ⊢ b : bool 
–  3 must be an int   i.e.   x : int, b : bool ⊢ 3 : int 
–  x must be an int   i.e.   x : int, b : bool ⊢ x : int 
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Simply-typed Lambda Calculus 
•  For the language in “tc.ml” we have five inference rules: 

•  Note how these rules correspond to the code. 
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E ⊢ i : int 

E ⊢ e1 : int   E ⊢ e2 : int 
 

E ⊢ e1 + e2 : int 

x : T  ∈  E 
  

E ⊢ x : T 

E, x : T ⊢ e : S 
 

E ⊢ fun (x:T) -> e  : T -> S 

E ⊢ e1 : T -> S  E ⊢ e2 : T  
 

E ⊢ e1 e2 : S 

INT VAR ADD 

FUN APP 



Type Checking Derivations 
•  A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.   

•  Leaves of the tree are axioms (i.e. rules with no premises) 
–  Example: the INT rule is an axiom 

•  Goal of the typechecker: verify that such a tree exists. 
•  Example:  Find a tree for the following program using the inference 

rules on the previous slide: 
                             �

                                ⊢ (fun (x:int) -> x + 3) 5  : int 
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Example Derivation Tree  

•  Note: the OCaml function typecheck verifies the existence of this 
tree.  The structure of the recursive calls when running typecheck is 
the same shape as this tree!  

•  Note that  x : int  ∈  E is implemented by the function lookup
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⊢ (fun (x:int) -> x + 3) 5  : int 

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int  

x : int ⊢ x + 3 : int 

x : int ⊢ x  : int x : int ⊢ 3  : int 

x : int  ∈  x : int 

APP 

INT 

INT VAR 

ADD 

FUN 



Type Safety 
"Well typed programs do not go wrong." !

  – Robin Milner, 1978 

•  Note: this is a very strong property. 
–  Well-typed programs cannot "go wrong" by trying to execute undefined  

code (such as    3 + (fun x -> 2)) 
–  Simply-typed lambda calculus is guaranteed to terminate!  �

(i.e. it isn't Turing complete) 
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Theorem:  (simply typed lambda calculus with integers)    
�
   If   ⊢ e : t  then there exists a value v such that   e  ⇓  v . 



Type Safety For General Languages 

•  Well-defined termination could include: 
–  halting with a return value 
–  raising an exception 

•  Type safety rules out undefined behaviors: 
–  abusing "unsafe" casts:  converting pointers to integers, etc. 
–  treating non-code values as code (and vice-versa) 
–  breaking the type abstractions of the language 

•  What is "defined" depends on the language semantics… 
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Theorem: (Type Safety) 
�
   If   ⊢ P : t  is a well-typed program, then either: 
     (a)       the program terminates in a well-defined way,  or 

 (b)   the program continues computing forever 


