Lecture 17

CIS 341: COMPILERS

Announcements / Plan

« HWS5: OAT - typechecking, structs, function pointers

— Available soon
— Due: Thursday, April 13

« HWG6: LLVM Optimization: analysis and register allocation
— Due: Wednesday, April 26

* FINAL EXAM: Thursday, May 4" noon - 2:00p.m.

Zdancewic CIS 341: Compilers

Type Safety For General Languages

Theorem: (Type Safety)

If =P:t isa well-typed program, then either:
(@) the program terminates in a well-defined way, or
(b) the program continues computing forever

* Well-defined termination could include:
— halting with a return value
— raising an exception

« Type safety rules out undefined behaviors:
— abusing "unsafe" casts: converting pointers to integers, etc.
— treating non-code values as code (and vice-versa)
— breaking the type abstractions of the language

* What is "defined" depends on the language semantics...

Zdancewic CIS 341: Compilers

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers

Tuples

* ML-style tuples with statically known number of products:
 First: add a new type constructor: T, * ... *T_

WLl Evre T, ... Ere,:T

EF- (e, ..., €

PROJ

CIS 341: Compilers

References

* ML-style references (note that ML uses only expressions)
* First, add a new type constructor: T ref

REF Ere:T

Frrefe:Tref

DEREF Er-e:Tref
EFle : T
ASSIGN Note the similarity with the
. . rules for arrays...
Er-e, :Tref Ere,:T

EFe, :=e, :unit

CIS 341: Compilers

Arrays

 Array constructs are not hard either, here is one possibility

* First: add a new type constructor: T[]

NEW EFe, :int
EFnew Tle,] : T[]
NDEXT Evre, : T[] Ere,:int
EFele,] o T
UPDATE

ErFe, :T[]] Ere,:int Erey:T

CIS 341: Compilers

Et+e le,] =e; 0k

e, is the size of the newly
allocated array.

Note: These rules don’t
ensure that the array index
is in bounds — that should
be checked dynamically.

NULL

e What is the type of null?

« Consider:
int[] a = null; // OK?
int x null; // not OK?
string s = null; // OK?

NULL

EFnull:r

* Null has any reference type
— Null is generic

* What about type safety?

— Requires defined behavior when dereferencing null
e.g. Java's NullPointerException

— Requires a safety check for every dereference operation
(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 341: Compilers

Recursive Definitions

Consider the ML factorial function:
let rec fact (x:int) : int =
if (x == 0) 1 else x * fact(x-1)

Note that the function name fact appears inside the body of fact’s
definition!
To typecheck the body of fact, we must assume that the type of fact is
already known.

E, fact : int -> int, x 1 int F ey, @ int

E = int fact(int x) (ebody) - int -> int

In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

Often useful to separate the “global context” from the “local context”

CIS 341: Compilers

What are types, anyway?

« A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be

very simple.

— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of

values:
type tp =
IntT
PosT | NegT | ZeroT
BoolT
TrueT | FalseT
AnyT

CIS 341: Compilers

(*
(*
(*
(*
(*

type of integers ¥*)
refinements of ints
type of booleans *)
subsets of booleans
any value *)

*)

*)

10

Modifying the typing rules

* We need to refine the typing rules too...

* Some easy cases:
— Just split up the integers into their more refined cases:

P-INT

1 >0

N-INT

E+1:Pos

e Same for booleans:

CIS 341: Compilers

TRUE

1 <O

/ZERO

EFi:Neg

E - true : True

FALSE

E-O: Zero

F + false : False

11

What about “if”’?

* Two cases are easy:

IF-T| Ere,:True Ere,:T UmJEre :False Ere,:T

Erif(e;)e,elsee; : T Erif(e;)e,elsee; : T

* What happens when we don’t know statically which branch will be
taken?

 Consider the typechecking problem:

x:bool +if (x) 3 else -1 : ?

* The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

CIS 341: Compilers 12

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos € Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:
~Any N
Int Bool
SN

Neg Zero Pos True False

Given any two types T, and T,, we can calculate their /east upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“1f” Typing Rule Revisited

* For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

E-e :bool Ere,:T, Ere;:T,

E+if (e;) e, else e; : LUB(T,,T,)

« Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
 In math notation, LUB(T1, T2) is sometimes written T, V T,
« LUB is also called the join operation.

CIS 341: Compilers

14

Subtyping Hierarchy

* A subtyping hierarchy:

~Any N
=
Int Bool
ST

Neg Zero Pos True False

« The subtyping relation is a partial order:
— Reflexive: T<:T foranytypeT
— Transitive: T,<:T, andT,<:TythenT, <: T,
— Antisymmetric: ItT, <:T,and T, <:T, thenT, =T,

CIS 341: Compilers

15

Soundness of Subtyping Relations

« We don’t have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

« A subtyping relation T, <: T, is sound if it approximates the underlying
semantic subset relation.
« Formally: write [T] for the subset of (closed) values of type T
— ie [Tl={v|Fv:T}
— e.g. [Zero] ={0}, [Pos] ={1, 2,3, ...}

« IfT, <:T, implies [T,] € [T,], thenT, <: T, is sound.
— e.g. Pos <:Intis sound, since {1,2,3,...} € {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,..}& {1,2,3,...}

CIS 341: Compilers 16

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T,, T,))I 2 [T,1 U [T,]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)l =[Int] ={...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} U {1,2,3,...} = [Zero] U [Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

* It just so happens that LUBs on types <: Int correspond to +

ADD

Ere,: T, EFe,: T, Ty<tInt T, <:Int

Ere +e,:T,VT,

CIS 341: Compilers 17

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

SUBSUMPTION Ere:T T<S

E-e:S

« Subsumption allows any value of type T to be treated as an S
whenever T <: S.

 Adding this rule makes the search for typing derivations more difficult

— this rule can be applied anywhere, since T <: T.

— But careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm.

CIS 341: Compilers

18

Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

Add a “checked downcast”
ErFe,:Int E x:Poste,:T, EFe;: T,

E+ifPos (x =e;) e, elsee; : T, VT,

At runtime, ifPos checks whether e, is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e,’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks

— We could give integer division the type: Int-> NonZero -> Int

CIS 341: Compilers 19

