
CIS 341: COMPILERS
Lecture 17

Announcements / Plan

•  HW5: OAT – typechecking, structs, function pointers
–  Available soon
–  Due: Thursday, April 13

•  HW6: LLVM Optimization: analysis and register allocation
–  Due: Wednesday, April 26

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m.

Zdancewic CIS 341: Compilers 2

Type Safety For General Languages

•  Well-defined termination could include:
–  halting with a return value
–  raising an exception

•  Type safety rules out undefined behaviors:
–  abusing "unsafe" casts: converting pointers to integers, etc.
–  treating non-code values as code (and vice-versa)
–  breaking the type abstractions of the language

•  What is "defined" depends on the language semantics…

Zdancewic CIS 341: Compilers 3

Theorem: (Type Safety)
�
 If ⊢ P : t is a well-typed program, then either:
 (a) the program terminates in a well-defined way, or

 (b) the program continues computing forever

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 4

�
Beyond describing “structure”… describing “properties”
Types as sets
Subsumption�

Tuples
•  ML-style tuples with statically known number of products:
•  First: add a new type constructor: T1 * … * Tn

CIS 341: Compilers 5

E ⊢ e1 : T1 … E ⊢ en : Tn

E ⊢ (e1, …, en) : T1 * … * Tn

TUPLE

E ⊢ e : T1 * … * Tn 1 ≤ i ≤ n

E ⊢ #i e : Ti

PROJ

References
•  ML-style references (note that ML uses only expressions)
•  First, add a new type constructor: T ref

CIS 341: Compilers 6

E ⊢ e : T

E ⊢ ref e : T ref

REF

E ⊢ e : T ref

E ⊢ !e : T

DEREF

Note the similarity with the
rules for arrays… E ⊢ e1 : T ref E ⊢ e2 : T

E ⊢ e1 := e2 : unit

ASSIGN

Arrays
•  Array constructs are not hard either, here is one possibility
•  First: add a new type constructor: T[]

CIS 341: Compilers 7

E ⊢ e1 : int

E ⊢ new T[e1] : T[]

NEW e1 is the size of the newly
allocated array.

E ⊢ e1 : T[] E ⊢ e2 : int

E ⊢ e1[e2] : T

INDEX

Note: These rules don’t
ensure that the array index
is in bounds – that should
be checked dynamically. E ⊢ e1 : T[] E ⊢ e2 : int E ⊢ e3 : T

E ⊢ e1[e2] = e3 ok

UPDATE

NULL
•  What is the type of null?
•  Consider:�

 int[] a = null; // OK?  
int x = null; // not OK?  

 string s = null; // OK?

 E ⊢ null : r

•  Null has any reference type
–  Null is generic

•  What about type safety?
–  Requires defined behavior when dereferencing null�

e.g. Java's NullPointerException
–  Requires a safety check for every dereference operation�

(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 341: Compilers 8

NULL

Recursive Definitions
•  Consider the ML factorial function:

let rec fact (x:int) : int =
 if (x == 0) 1 else x * fact(x-1)

•  Note that the function name fact appears inside the body of fact’s
definition!

•  To typecheck the body of fact, we must assume that the type of fact is
already known.

•  In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

•  Often useful to separate the “global context” from the “local context”

 CIS 341: Compilers 9

E, fact : int -> int, x : int ⊢ ebody : int

E ⊢ int fact(int x) (ebody) : int -> int

What are types, anyway?
•  A type is just a predicate on the set of values in a system.

–  For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

–  Equivalently, we can think of a type as just a subset of all values.

•  For efficiency and tractability, the predicates are usually taken to be
very simple.
–  Types are an abstraction mechanism

•  We can easily add new types that distinguish different subsets of
values:

type tp =
 | IntT (* type of integers *)
 | PosT | NegT | ZeroT (* refinements of ints *)
 | BoolT (* type of booleans *)
 | TrueT | FalseT (* subsets of booleans *)
 | AnyT (* any value *)

CIS 341: Compilers 10

Modifying the typing rules
•  We need to refine the typing rules too…
•  Some easy cases:

–  Just split up the integers into their more refined cases:

•  Same for booleans:

CIS 341: Compilers 11

i > 0

E ⊢ i : Pos

P-INT

i < 0

E ⊢ i : Neg

N-INT ZERO

E ⊢ 0 : Zero

TRUE

E ⊢ true : True

FALSE

E ⊢ false : False

What about “if”?
•  Two cases are easy:

•  What happens when we don’t know statically which branch will be
taken?

•  Consider the typechecking problem:�

 x:bool ⊢ if (x) 3 else -1 : ?

•  The true branch has type Pos and the false branch has type Neg.

–  What should be the result type of the whole if?

CIS 341: Compilers 12

E ⊢ e1 : True E ⊢ e2 : T

E ⊢ if (e1) e2 else e3 : T

E ⊢ e1 : False E ⊢ e3 : T

E ⊢ if (e1) e2 else e3 : T

IF-T IF-F

Subtyping and Upper Bounds
•  If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
•  This subset relation gives rise to a subtype relation: Pos <: Int
•  Such inclusions give rise to a subtyping hierarchy:

•  Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
–  Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
–  Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 341: Compilers 13

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

“If” Typing Rule Revisited
•  For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

•  Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2
•  LUB is also called the join operation.

CIS 341: Compilers 14

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
•  A subtyping hierarchy:

•  The subtyping relation is a partial order:
–  Reflexive: T <: T for any type T
–  Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

–  Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 15

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

Soundness of Subtyping Relations
•  We don’t have to treat every subset of the integers as a type.

–  e.g., we left out the type NonNeg

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

•  Formally: write ⟦T⟧ for the subset of (closed) values of type T
–  i.e. ⟦T⟧ = {v | ⊢ v : T}
–  e.g. ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
–  e.g. Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
–  e.g. Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 341: Compilers 16

Soundness of LUBs
•  Whenever you have a sound subtyping relation, it follows that:

 ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
–  Note that the LUB is an over approximation of the “semantic union”
–  Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇
 {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

•  Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

•  It just so happens that LUBs on types <: Int correspond to +

CIS 341: Compilers 17

E ⊢ e1 : T1 E ⊢ e2 : T2 T1 <: Int T2 <: Int

E ⊢ e1 + e2 : T1 ⋁ T2

ADD

Subsumption Rule
•  When we add subtyping judgments of the form T <: S we can

uniformly integrate it into the type system generically:

•  Subsumption allows any value of type T to be treated as an S
whenever T <: S.

•  Adding this rule makes the search for typing derivations more difficult
– this rule can be applied anywhere, since T <: T.
–  But careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm.

CIS 341: Compilers 18

E ⊢ e : T T <: S

E ⊢ e : S

SUBSUMPTION

Downcasting
•  What happens if we have an Int but need something of type Pos?

–  At compile time, we don’t know whether the Int is greater than zero.
–  At run time, we do.

•  Add a “checked downcast”

•  At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

•  Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

•  Note that such rules force the programmer to add the appropriate
checks
–  We could give integer division the type: Int -> NonZero -> Int

CIS 341: Compilers 19

E ⊢ e1 : Int E, x : Pos ⊢ e2 : T2 E ⊢ e3 : T3
�

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

