
CIS 341: COMPILERS 
Lecture 19 



Announcements / Plan 
 

•  HW5: OAT – typechecking, structs, function pointers 
–  Due: Thursday, April 13 
 
 
 
 
 

•  HW6:  LLVM Optimization: analysis and register allocation  
–  Due: Wednesday, April 26 

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m. 
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As always, start early! 



SUBTYPING OTHER TYPES 
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�
 
 



Subtyping and Upper Bounds 
•  If we think of types as sets of values, we have a natural inclusion 

relation:   Pos ⊆ Int 
•  This subset relation gives rise to a subtype relation:  Pos <: Int 
•  Such inclusions give rise to a subtyping hierarchy: 

•  Given any two types T1 and T2, we can calculate their least upper 
bound (LUB) according to the hierarchy. 
–  Example:  LUB(True, False) = Bool,  LUB(Int, Bool) = Any 
–  Note: might want to add types for “NonZero”, “NonNegative”, and 

“NonPositive” so that set union on values corresponds to taking LUBs on 
types. 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



“If” Typing Rule Revisited 
•  For statically unknown conditionals, we want the return value to be 

the LUB of the types of the branches: 

•  Note that LUB(T1, T2) is the most precise type (according to the 
hierarchy) that is able to describe any value that has either type T1 or 
type T2. 

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁  T2 
•  LUB is also called the join operation. 
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E ⊢ e1 : bool   E ⊢ e2 : T1    E ⊢ e3 : T2 
 

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)  

IF-BOOL 



Subtyping Hierarchy 
•  A subtyping hierarchy: 

•  The subtyping relation is a partial order: 
–  Reflexive:  T <: T    for any type T 
–  Transitive:   T1 <: T2  and T2 <: T3 then T1 <: T3 

–  Antisymmetric:  It T1 <: T2 and T2 <: T1 then T1 = T2 
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Downcasting 
•  What happens if we have an Int but need something of type Pos? 

–  At compile time, we don’t know whether the Int is greater than zero. 
–  At run time, we do. 

•  Add a “checked downcast” 

•  At runtime, ifPos checks whether e1 is > 0.  If so, branches to e2 and 
otherwise branches to e3. 

•  Inside the expression e2, x is the name for e1’s value, which is known 
to be strictly positive because of the dynamic check. 

•  Note that such rules force the programmer to add the appropriate 
checks 
–  We could give integer division the type:   Int -> NonZero -> Int 
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E ⊢ e1 : Int      E, x : Pos ⊢ e2 : T2      E ⊢ e3 : T3    
�

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3 



Extending Subtyping to Other Types 
•  What about subtyping for tuples? 

–  Intuition: whenever a program expects�
something of type S1 * S2, it is sound �
to give it a T1 * T2. 

–  Example:  (Pos * Neg) <: (Int * Int) 

 

•  What about functions? 

•  When  is   T1 -> T2   <:  S1 -> S2     ? 
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T1 <: S1    T2 <: S2 
 

(T1 * T2) <: (S1 * S2) 



Subtyping for Function Types 
•  One way to see it: 

 

•  Need to convert an S1 to a T1 and T2 to S2, so the argument type is 
contravariant and the output type is covariant. 
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Expected function 

Actual function S1 S2 T1 T2 

S1 <: T1    T2 <: S2 
 

(T1 -> T2) <: (S1 -> S2) 



Immutable Records 
•  Record type:  {lab1:T1; lab2:T2; … ; labn:Tn} 

–  Each labi is a label drawn from a set of identifiers. 
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E ⊢ e1 : T1   E ⊢ e2 : T2    …    E ⊢ en : Tn
 

 
E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn} 

RECORD 

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}  

E ⊢ e.labi : Ti 

PROJECTION 



Immutable Record Subtyping 
•  Depth subtyping: 

–  Corresponding fields may be subtypes 

•  Width subtyping: 
–  Subtype record may have more fields: 
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T1 <: U1  T2 <: U2  …    Tn <: Un 
 

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}  

DEPTH 

m ≤ n 
 

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}  

WIDTH 



Depth & Width Subtyping vs. Layout 
•  Width subtyping (without depth) is compatible with "inlined" record 

representation as with C structs:�
�
{x:int; y:int; z:int}   <:   {x:int; y:int}         
[Width Subtyping] 

–  The layout and underlying field indices for 'x' and 'y' are identical. 
–  The 'z' field is just ignored 

•  Depth subtyping (without width) is similarly compatible, assuming 
that the space used by A is the same as the space used by B whenever 
A <: B 

•  But… they don't mix without  
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x y z x y 



Immutable Record Subtyping (cont’d) 
•  Width subtyping assumes an implementation in which order of fields 

in a record matters:�
        {x:int; y:int}   ≠  {y:int; x:int}

•  But:   {x:int; y:int; z:int} <: {x:int; y:int}
–  Implementation: a record is a struct, subtypes just add fields at the end of 

the struct. 

•  Alternative: allow permutation of record fields:�
       {x:int; y:int} = {y:int; x:int}
–  Implementation: compiler sorts the fields before code generation. 
–  Need to know all of the fields to generate the code 

•  Permutation is not directly compatible with width subtyping: 
     {x:int; z:int; y:int} = �
     {x:int; y:int; z:int}  </:  {y:int; z:int}

CIS 341: Compilers 13 



If you want both: 
•  If you want permutability & dropping, you need to either copy (to 

rearrange the fields) or use a dictionary like this: 

p =  {x=42; y=55; z=66}  
    :    {x:int; y:int; z:int}

q : {y:int; z:int}

x y z 

42 55 66 

y z 

dictionary 

dictionary 



Subtyping and References 
•  What is the proper subtyping relationship for references and arrays? 

•  Suppose we have NonZero as a type and the division operation has 
type:   Int -> NonZero -> Int 
–  Recall that NonZero <: Int 

•  Should     (NonZero ref) <: (Int ref)   ? 
•  Consider this program: 

Int bad(NonZero ref r) {
  Int ref a = r;   (* OK because (NonZero ref <: Int ref*)
  a := 0;          (* OK because 0 : Zero <: Int *)
  return (42 / !r) (* OK because !r has type NonZero *)
}      
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Mutable Structures are Invariant 
•  Covariant reference types are unsound  

–  As demonstrated in the previous example 

•   Contravariant reference types are also unsound 
–  i.e. If T1 <: T2 then ref T2 <: ref T1  is also unsound 
–  Exercise: construct a program that breaks contravariant references. 

•  Moral: Mutable structures are invariant:  �
           T1 ref <: T2 ref    implies   T1 = T2 

•  Same holds for arrays, OCaml-style mutable records, object fields, etc. 
–  Java generics are invariant for this reason too:  �

Queue<String> </: Queue<Object>�
 

–  Note: Java and C# get subtyping of arrays wrong.  They allows covariant 
array subtyping, but then compensate by adding a dynamic check on 
every array update! 
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Another Way to See It 
•  We can think of a reference cell as an immutable record (object) with 

two functions (methods) and some hidden state:�
     T ref   ≃   {get: unit -> T;   set: T -> unit}
–  get returns the value hidden in the state. 
–  set updates the value hidden in the state. 

•  When is T ref <: S ref? 
•  Consider depth subtyping of these records… 
     {get: unit -> T; set: T -> unit} <: �
     {get: unit -> S; set: S -> unit}

–  get components are subtypes:     unit -> T   <:   unit -> S�
  set components are subtypes:  T -> unit   <:   S -> unit 

•  From get, we must have T <: S (covariant return) 
•  From set, we must have S <: T (contravariant arg.) 
•  From T <: S and S <: T we conclude T = S. 
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STRUCTURAL VS. NOMINAL 
TYPES 
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Structural vs. Nominal Typing 
•  Is type equality / subsumption defined by the structure of the data or the 

name of the data? 
•  Example 1:  type abbreviations (OCaml) vs. “newtypes” (a la Haskell) 

 

•  Type abbreviations are treated “structurally”�
Newtypes are treated “by name” 
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(* OCaml: *)
type cents = int    (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer  (* Integer and Cents arr  
                                isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y                (* Ill typed! *)



Nominal Subtyping in Java 
•  In Java, Classes and Interfaces must be named and their relationships 

explicitly declared: 

•  Similarly for inheritance: programmers must declare the subclass 
relation via the “extends” keyword. 
–  Typechecker still checks that the classes are structurally compatible  
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(* Java: *)
interface Foo {
  int foo();
}

class C { /* Does not implement the Foo interface */
  int foo() {return 2;}
}

class D implements Foo {   
  int foo() {return 341;}
}



COMPILING CLASSES AND 
OBJECTS 
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Code Generation for Objects 
•  Classes: 

–  Generate data structure types  
•  For objects that are instances of the class and for the class tables 

–  Generate the class tables for dynamic dispatch 

•  Methods: 
–  Method body code is similar to functions/closures 
–  Method calls require dispatch 

•  Fields: 
–  Issues are the same as for records 
–  Generating access code 

•  Constructors: 
–  Object initialization 

•  Dynamic Types: 
–  Checked downcasts 
–  “instanceof” and similar type dispatch 
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Multiple Implementations 
•  The same interface can be implemented by multiple classes: 

CIS 341: Compilers 23 

interface IntSet {
    public IntSet insert(int i);
    public boolean has(int i);
    public int size();
}

class IntSet1 implements IntSet {
  private List<Integer> rep; 
  public IntSet1() {
    rep = new LinkedList<Integer>();}

  public IntSet1 insert(int i) {
rep.add(new Integer(i));

    return this;}

  public boolean has(int i) {
    return rep.contains(new Integer(i));}

  public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
  private Tree rep;
  private int size; 
  public IntSet2() {
    rep = new Leaf(); size = 0;}

  public IntSet2 insert(int i) {
Tree nrep = rep.insert(i); 

    if (nrep != rep) {
      rep = nrep; size += 1;
    }

return this;}

  public boolean has(int i) {
return rep.find(i);}

  public int size() {return size;}
}



The Dispatch Problem 
•  Consider a client program that uses the IntSet interface: 

IntSet set = …;
int x = set.size();

•  Which code to call? 
–  IntSet1.size ? 
–  IntSet2.size ? 

•  Client code doesn’t know the answer. 
–  So objects must “know” which code to call. 
–  Invocation of a method must indirect through the object. 
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Compiling Objects 
•  Objects contain  a pointer to a 

dispatch vector (also called a 
virtual table or vtable) with 
pointers to method code. 

•  Code receiving set:IntSet 
only knows that set has an 
initial dispatch vector pointer 
and the layout of that vector. 
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rep:List

IntSet1.insert

IntSet1.has

IntSet1.size

rep:Tree

size:int

IntSet2.insert

IntSet2.has

IntSet2.size

IntSet1 
Dispatch Vector 

IntSet2 
Dispatch Vector 

set

IntSet 

? 

?.insert

?.has

?.size

Dispatch Vector 



Method Dispatch (Single Inheritance) 
•  Idea: every method has its own small integer index. 
•  Index is used to look up the method in the dispatch vector. 
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interface A {
  void foo();
}

interface B extends A {
  void bar(int x);
  void baz();
}

class C implements B {
  void foo() {…} 
  void bar(int x) {…}
  void baz() {…}
  void quux() {…}
}

Index 

0 

1 
2 

0 
1 
2 
3 

Inheritance / Subtyping: 
C <: B <: A 



Dispatch Vector Layouts 
•  Each interface and class gives rise to a dispatch vector layout. 
•  Note that inherited methods have identical dispatch indices in the 

subclass.  (Width subtyping) 
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A 

A fields 

foo
Dispatch Vector 

B 

B fields 

foo

bar

baz

Dispatch Vector 

C 

C fields 

foo

bar

baz

quux

Dispatch Vector 



Representing Classes in the LLVM 
•  During typechecking, create a class hierarchy 

–  Maps each class to its interface: 
•  Superclass 
•  Constructor type 
•  Fields 

•  Method types (plus whether they inherit & which class they inherit from) 

•  Compile the class hierarchy to produce: 
–  An LLVM IR struct type for each object instance 
–  An LLVM IR struct type for each vtable (a.k.a. class table) 
–  Global definitions that implement the class tables 
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Example OO Code 
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class A {
  new (int x)()                // constructor
  { int x = x; }

  void print() { return; }     // method1
  int blah(A a) { return 0; }  // method2

}

class B <: A {
  new (int x, int y, int z)(x){
    int y = y;
    int z = z;
  }

  void print() { return; }   // overrides A             
}

class C <: B {
  new (int x, int y, int z, int w)(x,y,z){
    int w = w;
  }

  void foo(int a, int b) {return;}
  void print() {return;}    // overrides B
}



Example OO Hierarchy in LLVM 
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%Object = type { %_class_Object* }
%_class_Object = type {  }

%A = type { %_class_A*, i64 }
%_class_A = type { %_class_Object*, void (%A*)*, i64 (%A*, %A*)* }

%B = type { %_class_B*, i64, i64, i64 }
%_class_B = type { %_class_A*, void (%B*)*, i64 (%A*, %A*)* }

%C = type { %_class_C*, i64, i64, i64, i64 }
%_class_C = type { %_class_B*, void (%C*)*, i64 (%A*, %A*)*, void (%C*, i64, i64)* }

@_vtbl_Object = global %_class_Object {  }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object, 
                              void (%A*)* @print_A, 
                              i64 (%A*, %A*)* @blah_A }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A, 
                              void (%B*)* @print_B, 
                              i64 (%A*, %A*)* @blah_A }

@_vtbl_C = global %_class_C { %_class_B* @_vtbl_B, 
                              void (%C*)* @print_C, 
                              i64 (%A*, %A*)* @blah_A, 
                              void (%C*, i64, i64)* @foo_C }


