Lecture 19

CIS 341: COMPILERS

Announcements / Plan

« HWS5: OAT - typechecking, structs, function pointers
— Due: Thursday, April 13

As always, start early!

« HWG6: LLVM Optimization: analysis and register allocation
— Due: Wednesday, April 26

* FINAL EXAM: Thursday, May 4" noon — 2:00p.m.

Zdancewic CIS 341: Compilers

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos € Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:
~Any N
Int Bool
SN

Neg Zero Pos True False

Given any two types T, and T,, we can calculate their /east upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“1f” Typing Rule Revisited

* For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

E-e :bool Ere,:T, Ere;:T,

E+if (e;) e, else e; : LUB(T,,T,)

« Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
 In math notation, LUB(T1, T2) is sometimes written T, V T,
« LUB is also called the join operation.

CIS 341: Compilers

Subtyping Hierarchy
* A subtyping hierarchy:

~Any N
=
Int Bool
ST

Neg Zero Pos True False

« The subtyping relation is a partial order:
— Reflexive: T<:T foranytypeT
— Transitive: T,<:T, andT,<:TythenT, <: T,
— Antisymmetric: ItT, <:T,and T, <:T, thenT, =T,

CIS 341: Compilers

Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

Add a “checked downcast”
ErFe,:Int E x:Poste,:T, EFe;: T,

E+ifPos (x =e;) e, elsee; : T, VT,

At runtime, ifPos checks whether e, is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e,’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks

— We could give integer division the type: Int-> NonZero -> Int

CIS 341: Compilers

Extending Subtyping to Other Types

« What about subtyping for tuples?

— Intuition: whenever a program expects

something of type S, * S,, it is sound T, <S5, T,<:5,
togiveitaT, *T,.
— Example: (Pos * Neg) <: (Int * Int) (T1 * TZ) < (51 % 82)

« What about functions?

* Whenis T,>T, <t S§;,->S, ?

CIS 341: Compilers

Subtyping for Function Types

* One way to see it

Expected

T

function

>

* Need to convertan S, toaT,; and T, to S,, so the argument type is

contravariant and the output type is covariant.

S, <:T, T,<:5,

CIS 341: Compilers

(T, >T,) < (5 ->5,)

* Recordt

Immutable Records

ype: {lab,:T,; lab,:T,; ..

. lab: T}

— Each lab, is a label drawn from a set of identifiers.

RECORD

Ere, T, Ere,: T,

E-e :T

n

n

E - {lab, = e;; lab, = e,; ..

PROJECTION

E+e:{lab,:T;; [ab,:T,; ..

CIS 341: Compilers

.5 lab ;T }

Ere.lab, : T

., lab, =e.} : {lab,:T,; lab,:T,; ..

. lab T}

10

Immutable Record Subtyping

* Depth subtyping:
— Corresponding fields may be subtypes

PEFIR] 1. <U, T,<U, ... T.<U

n n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:U; lab,:U,; ... ; lab:U_}

* Width subtyping:

— Subtype record may have more fields:

WIDTH

m=<n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:T;; lab,:T,; ... ; lab,:T }

CIS 341: Compilers 11

Depth & Width Subtyping vs. Layout

Width subtyping (without depth) is compatible with "inlined" record
representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:int}

[Width Subtyping]

oy Ly

— The layout and underlying field indices for 'x' and 'y' are identical.
— The 'Z' field is just ignored

Depth subtyping (without width) is similarly compatible, assuming

that the space used by A is the same as the space used by B whenever
A<:B

But... they don't mix without

Zdancewic CIS 341: Compilers 12

CIS 341: Compilers

Immutable Record Subtyping (cont’d)

Width subtyping assumes an implementation in which order of fields
in a record matters:

{x:int; y:int} # {y:1int; x:int}
But: {x:int; y:int; z:int} <:{x:int; y:int}
— Implementation: a record is a struct, subtypes just add fields at the end of
the struct.

Alternative: allow permutation of record fields:
{x:int; y:int} = {y:int; x:int}
— Implementation: compiler sorts the fields before code generation.
— Need to know all of the fields to generate the code
Permutation is not directly compatible with width subtyping:
{x:int; z:int; y:int} =
{x:int; y:int; z:int} </: {y:int; z:int}

13

If you want both:

* If you want permutability & dropping, you need to either copy (to
rearrange the fields) or use a dictionary like this:

dictionary

Tn<—p__ (ret2; yo55; 266)

l {x:int; y:int; z:int}

lll
|

|

=<— q:{y:int; z:int}

dictionary

%) |

Subtyping and References

« What is the proper subtyping relationship for references and arrays?

« Suppose we have NonZero as a type and the division operation has
type: Int-> NonZero -> Int

— Recall that NonZero <: Int
 Should (NonZero ref) <: (Intref) ?
 Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int ref*)
a := 0; (* OK because 0 : Zero <: Int ¥*)
return (42 / !r) (* OK because !r has type NonZero *)

CIS 341: Compilers 15

Mutable Structures are Invariant

Covariant reference types are unsound
— As demonstrated in the previous example

Contravariant reference types are also unsound
— ie. IfT, <:T, thenref T, <: ref T, is also unsound

— Exercise: construct a program that breaks contravariant references.

Moral: Mutable structures are invariant:
T, ref <:T,ref implies T,=T,

Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Java generics are invariant for this reason too:
Queue<String> </: Queue<Object>

— Note: Java and C# get subtyping of arrays wrong. They allows covariant
array subtyping, but then compensate by adding a dynamic check on
every array update!

CIS 341: Compilers 16

CIS 341: Compilers

Another Way to See It

We can think of a reference cell as an immutable record (object) with
two functions (methods) and some hidden state:
Tref = {get: unit -> T; set: T -> unit}
— get returns the value hidden in the state.
— set updates the value hidden in the state.

When is T ref <: S ref?
Consider depth subtyping of these records...

{get: unit -> T; set: T -> unit} <
{get: unit -> S; set: S -> unit}

— get components are subtypes: unit->T <: unit->S
set components are subtypes: T ->unit <: S->unit

From get, we must have T <: S (covariant return)
From set, we must have S <: T (contravariant arg.)
FromT <: Sand S <: T we conclude T = S.

17

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

s type equality / subsumption defined by the structure of the data or the
name of the data?

Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + vy

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr

isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo xy =x +y (* I11l typed! *)

Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers

Nominal Subtyping in Java

 InJava, Classes and Interfaces must be named and their relationships
explicitly declared:
(* Java: *)

interface Foo {
int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}

}

 Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
— Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers

20

COMPILING CLASSES AND
OBJECTS

Zdancewic CIS 341: Compilers

Code Generation for Objects

e C(lasses:

— Generate data structure types
* For objects that are instances of the class and for the class tables

— Generate the class tables for dynamic dispatch
* Methods:
— Method body code is similar to functions/closures
— Method calls require dispatch
* Fields:
— lIssues are the same as for records
— Generating access code
* Constructors:
— Obiject initialization
* Dynamic Types:
— Checked downcasts
— “instanceof” and similar type dispatch

CIS 341: Compilers 22

Multiple Implementations

« The same interface can be implemented by multiple classes:

interface IntSet {
public IntSet insert(int 1i);
public boolean has(int i);
public int size();

class IntSetl implements IntSet {
private List<Integer> rep;
public IntSetl() {
rep = new LinkedList<Integer>();}

public IntSetl insert(int i) {
rep.add(new Integer(i));

return this;}

public boolean has(int i) {
return rep.contains(new Integer(i));}

public int size() {return rep.size();}

CIS 341: Compilers

class IntSet2 implements IntSet {
private Tree rep;
private int size;
public IntSet2() {
rep = new Leaf(); size = 0;}

public IntSet2 insert(int i) {
Tree nrep = rep.insert(i);
if (nrep != rep) {
rep = nrep; size += 1;

}

return this;}

public boolean has(int i) {
return rep.find(i);}

public int size() {return size;}

The Dispatch Problem

 Consider a client program that uses the IntSet interface:

IntSet set = ..;

int x = set.size();

« Which code to call?
— IntSetl.size ?
— IntSet2.size ?

* Client code doesn’t know the answer.
— So objects must “know” which code to call.
— Invocation of a method must indirect through the object.

CIS 341: Compilers

24

Compiling Objects

* Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

« Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

rep:List

rep:Tree

size:int

Dispatch Vector

?.lnsert

set
.\\\\\ET IntSet o >

? .has

?.8ize

CIS 341: Compilers

Dispatch Vector

IntSet1 — >

IntSetl.insert

IntSetl.has

IntSetl.size

Dispatch Vector

IntSet2 o—F——>

IntSet2.insert

IntSet2.has

IntSet2.size

Method Dispatch (Single Inheritance)

* lIdea: every method has its own small integer index.
 Index is used to look up the method in the dispatch vector.

interface A {
void foo();

}

interface B extends A {
void bar(int x);
void baz();

}

class C implements B {
void foo() {..}
void bar(int x) {..}
void baz() {..}
void quux() {..}

}

CIS 341: Compilers

Index

0

1 Inheritance / Subtyping:
2 C<B<A

0

1

2

3

26

Dispatch Vector Layouts

Each interface and class gives rise to a dispatch vector layout.
Note that inherited methods have identical dispatch indices in the
subclass. (Width subtyping)

Dispatch Vector
A] ’| foo

A fields

Dispatch Vector

foo

bar

baz

Dispatch Vector
C] ?| foo

bar

baz

CIS 341: Compilers quux

Representing Classes in the LLVM

« During typechecking, create a class hierarchy

— Maps each class to its interface:
* Superclass
» Constructor type
* Fields

* Method types (plus whether they inherit & which class they inherit from)

« Compile the class hierarchy to produce:
— An LLVM IR struct type for each object instance
— An LLVM IR struct type for each vtable (a.k.a. class table)
— Global definitions that implement the class tables

Zdancewic CIS 341: Compilers

28

Zdancewic

Example OO Code

class A {
new (int x) ()
{ int x = x; }

void print() { return;
int blah(A a) { return

}

class B <: A {

new (int x, int y, int
int y = y;
int z = z;

}

void print() { return;

}

class C <: B {
new (int x, int y, int
int w = w;

}

void foo(int a, int b)
void print() {return;}

}

CIS 341: Compilers

// constructor

} // methodl
0; } // method2

z) (x){

} // overrides A

z, int w)(x,y,2){

{return;}
// overrides B

29

Example OO Hierarchy in LLVM

$0bject = type { % _class Object* }
% class Object = type { }

%A = type { %_class_ A*, 164 }
% class A = type { % _class Object*, void (%A*)*, 164 (%A*, %SA*)* }

$B = type { % class B*, 164, 164, 164 }
% class B = type { %_class_A*, void (%B*)*, 164 (%A*, %A*)* }

$C = type { % class C*, 164, 164, 164, 164 }
% class C = type { % _class B*, void (%C*)*, 164 (%A*, %$A*)*, void (%C*, 164, i64)* }

@ vtbl Object = global % class Object { }

@ vtbl A global % class A { % class Object* @ vtbl Object,
void (%A*)* @print A,

i64 (%A*, %A*)* @blah A }

@ vtbl B global % class B { % class A* @ vtbl A,
void (%B*)* @print B,

i64 (%A*, %A*)* @blah A }

@ vtbl C global % class C { % class B* @ vtbl B,
void (%C*)* @print C,
i64 (%A*, $A*)* @blah A,

void (%C*, 164, i64)* @foo C }

Zdancewic CIS 341: Compilers

