Lecture 21

CIS 341: COMPILERS

Announcements / Plan

« HWS5: OAT - typechecking, structs, function pointers
— Due: Thursday, April 13

« HW®6: LLVM Optimization: analysis and register allocation
— Due: Wednesday, April 26

« FINAL EXAM: Thursday, May 4" noon — 2:00p.m.

Zdancewic CIS 341: Compilers

MULTIPLE INHERITANCE

Zdancewic CIS 341: Compilers

Multiple Inheritance

* C++: a class may declare more than one superclass.

« Semantic problem: Ambiguity
class A { int m(); }
class B { int m(); }
class C extends A,B {..} // which m?

— Same problem can happen with fields.

— In C++, fields and methods can be duplicated when such ambiguity arises
(though explicit sharing can be declared too)

 Java: a class may implement more than one interface.

— No semantic ambiguity: if two interfaces contain the same method
declaration, then the class will implement a single method

interface A { int m(); }
interface B { int m(); }
class C implements A,B {int m() {..}} // only one m

CIS 341: Compilers 4

Dispatch Vector Layout Strategy Breaks

interface Shape { D.V.Index

void setCorner(int w, Point p); 0

interface Color {
float get(int rgb);

void set(int rgb, float value);

class Blob implements Shape, Color {

void setCorner(int w, Point p) {..} 0?
float get(int rgb) {..} 0?
void set(int rgb, float value) {..} 1?

CIS 341: Compilers

General Approaches

« Can't directly identify methods by position anymore.

« Option 1: Use a level of indirection:
— Map method identifiers to code pointers (e.g. index by method name)
— Use a hash table
— May need to do search up the class hierarchy

« Option 2: Give up separate compilation
— Use “sparse” dispatch vectors, or binary decision trees
— Must know then entire class hierarchy

* Option 3: Allow multiple D.V. tables (C++)
— Choose which D.V. to use based on static type
— Casting from/to a class may require run-time operations

« Note: many variations on these themes
— Different Java compilers pick different approaches to options1 and 2...

CIS 341: Compilers

Option 1: Search + Inline Cache

 For each class & interface keep a table mapping method names to
method code
— Recursively walk up the hierarchy looking for the method name

* Note: Identifiers are in quotes are not strings; in practice they are
some kind of unique identifier.

Interface Map

“setCorner”
" get" /
Blob Class Info S /
.é ._I > uBlOb" /
Blob fields super ~ get:
_____________________ ! itable / <code>
setCorner
get «
set

CIS 341: Compilers

Inline Cache Code

« Optimization: At call site, store class and code pointer in a cache

— On method call, check whether class matches cached value

« Compiling: Shape s = new Blob(); s.get();

Call site 434

» Compiler knows that s is a Shape
— Suppose $rax holds object pointer

« Cached interface dispatch:
// set up parameters

movqg [%rax], tmp S

cmpg tmp, [cacheClass434]. Bbbﬁddﬁ

Jnz miss434
callg [cacheCode4d34]
miss434:

// do the slow search

CIS 341: Compilers

Blob

Table in data seg.

cacheClass434:
“Blob”

cacheCoded34:
<ptr>

Class Info

—> — >

“Blob”

super

itable

setCorner

get

set

Option 1 variant 2: Hash Table

* Idea: don't try to give all methods unique indices
— Resolve conflicts by checking that the entry is correct at dispatch
* Use hashing to generate indices
— Range of the hash values should be relatively small
— Hash indices can be pre computed, but passed as an extra parameter

interface Shape { D.V.Index
void setCorner(int w, Point p); hash(“setCorner”) = 11

interface Color {
float get(int rgb); hash(“get”) = 4
void set(int rgb, float value); hash(“set”) = 7

class Blob implements Shape, Color {

void setCorner(int w, Point p) {..} 11
float get(int rgb) {..}
void set(int rgb, float value) {..} 7

Dispatch with Hash Tables

« What if there is a conflict?

— Entries containing several methods point to code that resolves conflict (e.g. by
searching through a table based on class name)

Blob Class Info
S e—> 7| “Blob” h
. Blob fields 2l e
« Advantage: e i <empty>
— Simple, basic code dispatch is Fixed #
(almost) identical Of entries
— Reasonably get
efficient
« Disadvantage: set
— Wasted space in DV SO
— Extra argument needed for resolution e
— Slower dispatch if conflict setCorner |

CIS 341: Compilers 10

Option 2 variant 1: Sparse D.V. Tables

* Give up on separate compilation...
« Now we have access to the whole class hierarchy.

* So: ensure that no two methods in the same class are allocated the
same D.V. offset.

— Allow holes in the D.V. just like the hash table solution
— Unlike hash table, there is never a conflict!

« Compiler needs to construct the method indices

— Graph coloring techniques can be used to construct the D.V. layouts in a
reasonably efficient way (to minimize size)

— Finding an optimal solution is NP complete!

CIS 341: Compilers 11

Example Object Layout

« Advantage: Identical dispatch and performance to single-inheritance
case

« Disadvantage: Must know entire class hierarchy

Blob Class Info
S c—— D uBlOb"

Blob fields e e

L ! setCorner L
Minimize #

~Of entries

set

get

CIS 341: Compilers 12

Option 2 variant 2: Binary Search Trees

 ldea: Use conditional branches not indirect jumps
* Each object has a class index (unique per class) as first word
— Instead of D.V. pointer (no need for one!)

« Method invocation uses range tests to select among n possible classes in Ig n time
— Direct branches to code at the leaves.

Shape x;
x.SetCorner(..); Color Shape // interfaces

Mov eax, [x] RGBColor Blob Rectangle Circle Egg // classes
Mov ebx, [eax] 3 0 1) 4
Cmp ebx, 1

Jle Ll

Cmp ebx, 2

Je CircleSetCorner
Jmp EggSetCorner

_I(:',l;lp ebx, 0 <:> \ /

Je _ BlobSetCorner o) 1 2 4

Jmp RectangleSetCorner ..
— Decision tree

CIS 341: Compilers 13

Search Tree Tradeoffs

« Binary decision trees work well if the distribution of classes that may
appear at a call site is skewed.

— Branch prediction hardware eliminates the branch stall of ~10 cycles (on
X86)

 Can use profiling to find the common paths for each call site
individually
— Put the common case at the top of the decision tree (so less search)

— 90%/10% rule of thumb: 90% of the invocations at a call site go to the
same class

 Drawbacks:

— Like sparse D.V.'s you need the whole class hierarchy to know how many
leaves you need in the search tree.

— Indirect jumps can have better performance if there are >2 classes (at most
one mispredict)

CIS 341: Compilers 14

Option 3: Multiple Dispatch Vectors

* Duplicate the D.V. pointers in the object representation.
« Static type of the object determines which D.V. is used.

Shape D.V.
interface Shape { D.V.Index ——>3| setCorner
void setCorner(int w, Point p); 0
}
interface Color
. ¢ Color D.V.
float get(int rgb);
void set(int rgb, float value); > get
} set

class Blob implements Shape, Color {
void setCorner(int w, Point p) {..} /{ setCorner
float get(int rgb) {..}
void set(int rgb, float value) {..} Blob, Shape o« &

}

Color o5 > get

set

CIS 341: Compilers Lo 15

Multiple Dispatch Vectors

« A reference to an object might have multiple “entry points”
— Each entry point corresponds to a dispatch vector
— Which one is used depends on the statically known type of the program.

Blob b = new Blob();
Color y = b; //implicit cast!

o Compile /{ setCorner

Color y = b; be—"bs «
As y o > e 5| get
Movqg [b] + 8 , v set

CIS 341: Compilers 16

Multiple D.V. Summary

 Benefit: Efficient dispatch, same cost as for multiple inheritance

« Drawbacks:
— Cast has a runtime cost
— More complicated programming model... hard to understand/debug?

* What about multiple inheritance and fields?

CIS 341: Compilers

17

Multiple Inheritance: Fields

« Multiple supertypes (Java): methods conflict (as we saw)
* Multiple inheritance (C++): fields can also conflict

* Location of the object’s fields can no longer be a constant offset from
the start of the object.

Color
class Color { D.V. otf—>
float r, g, b; /*offsets: 4,8,12 */ r
} g
class Shape { b
Point LL, UR; /*offsets: 4, 8 */ Shape
} D.V. ot — >
class ColoredShape extends LL
Color, Shape { UR
int z;
} ColoredShape ??

CIS 341: Compilers 18

C++ approach:

 Add pointers to the
superclass fields

— Need to have multiple
dispatch vectors
anyway (to deal with
methods)

* Extra indirection
needed to access

superclass fields

* Used even if there is a
single superclass

— Uniformity

CIS 341: Compilers

Color [/’4 D.V.

Shape

ColoredShape

UR

DoVo @

~¢ super

—o super

z

19

Observe: Closure ~ Single-method Object

 Free variables
* Environment pointer
e Closure for function:

fun (XIY) ->
Xx +y+a+b

N\

D
env o> a

__apply »

s

__apply: <code>

CIS 341: Compilers

~~
m~~/

~~

m~~/

Fields

“this” parameter

Instance of this class:
class C {
int a, b;

int apply(x,y) {
X +y+a+b

« &> _app]_y/

e

__apply: <code>

o‘m‘<

20

A high-level tour of a variety of optimizations.

OPTIMIZATIONS

Zdancewic CIS 341: Compilers 21

Optimizations

* The code generated by our OAT compiler so far is pretty inefficient.
— Lots of redundant moves.

— Lots of unnecessary arithmetic instructions.

* Consider this OAT program:

int foo(int w) {
var X = 3 + 5;
var y = X * w;
var z =y - 0;
return z * 4;

* See opt.c, opt-oat.oat

CIS 341: Compilers

Unoptimized vs. Optimized Output

CIS 341: Compilers

.globl _foo

foo:

_ fresh2:

pushl sebp

movl
subl

leal
movl
movl
movl
movl
movl
movl
movl
movl
movl
addl
leal
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl

tesp, tebp
$64, tesp

-64(%ebp), eax
%eax, -48(%ebp)
8(sebp), seax
3eax, %ecx
-48(%ebp), %eax
secx, (%eax)
$3, teax

teax, -44(%ebp)
$5, teax

teax, tecx
tecx, -44(%ebp)
-60(%ebp), teax
seax, -40(%ebp)
-44(%ebp), teax
teax, tecx
-40(%ebp), teax
tecx, (%eax)
-40(%ebp), teax
(veax), tecx
tecx, -36(%ebp)
-48(%ebp), seax
(teax), tecx
tecx, -32(%ebp)
-36(%ebp), seax
teax, -28(tebp)
-32(%ebp), teax
teax, %ecx
-28(%ebp), %eax

imull tecx, seax

movl
leal
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
subl
leal
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl

teax, -28(%ebp)
-56(2ebp), teax
teax, -24(%ebp)
-28(%ebp), teax
teax, tecx
-24(%ebp), teax
tecx, (teax)
-24(%ebp), teax
(teax), tecx
tecx, -20(%ebp)
-20(%ebp), teax
seax, -16(%ebp)
50, teax

teax, tecx
tecx, -16(%ebp)
-52(%ebp), teax
teax, -12(%ebp)
-16(%ebp), teax
teax, tecx
-12(%ebp), teax
tecx, (%eax)
-12(%ebp), %eax
(seax), secx
tecx, -8(%ebp)
-8(ebp), teax
teax, -4(tebp)
$4, teax

teax, tecx
-4(%ebp), teax

imull secx, $eax

movl
movl
movl
popl
ret

teax, -4(%ebp)
-4(%ebp), %eax
tebp, tesp
tebp

Hand optimized code:

_foo:
shlg $5, %$rdi

movq $rdi, %rax

ret

* Function foo may be inlined by
the compiler, so it can be
implemented by just one
instruction!

23

Why do we need optimizations?

To help programmers...
— They write modular, clean, high-level programs
— Compiler generates efficient, high-performance assembly

Programmers don’t write optimal code

High-level languages make avoiding redundant computation
inconvenient or impossible

— eg A[1][]J] = A[1][]] + 1
Architectural independence

— Optimal code depends on features not expressed to the programmer
— Modern architectures assume optimization

Different kinds of optimizations:

— Time: improve execution speed

— Space: reduce amount of memory needed

— Power: lower power consumption (e.g. to extend battery life)

CIS 341: Compilers

Some caveats

« Optimization are code transformations:
— They can be applied at any stage of the compiler
— They must be safe — they shouldn’t change the meaning of the program.

* In general, optimizations require some program analysis:
— To determine if the transformation really is safe

— To determine whether the transformation is cost effective

 This course: most common and valuable performance optimizations
— See Muchnick (optional text) for ~10 chapters about optimization

CIS 341: Compilers

When to apply optimization

High level

[

|

Mid level
A

[

|

|

Low level

CIS 341: Compilers

AST

IR

Canonical IR

Abstract assembly

Assembly

Inlining

Function specialization
Constant folding

Constant propagation

Value numbering

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength Reduction

Constant folding & propagation
Branch prediction / optimization
Register allocation

Loop unrolling

Cache optimization

26

Where to Optimize?

Usual goal: improve time performance
Problem: many optimizations trade space for time

Example: Loop unrolling

— ldea: rewrite a loop like:
for(int i=0; i<100; i=i+1) {
s = s + a[i];

}

— Into a loop like:
for(int i=0; 1i<99; i=i+2){
s = s + a[i];
s = s + a[i+l];
}
Tradeoffs:

— Increasing code space slows down whole program a tiny bit
(extra instructions to manage) but speeds up the loop a lot

— For frequently executed code with long loops: generally a win
— Interacts with instruction cache and branch prediction hardware

Complex optimizations may never pay off!

CIS 341: Compilers

27

Writing Fast Programs In Practice

* Pick the right algorithms and data structures.

— These have a much bigger impact on performance that compiler
optimizations.

— Reduce # of operations
— Reduce memory accesses
— Minimize indirection — it breaks working-set coherence

» Then turn on compiler optimizations
* Profile to determine program hot spots
* Evaluate whether the algorithm/data structure design works

« ...if so: “tweak” the source code until the optimizer does “the right
thing” to the machine code

CIS 341: Compilers

Safety

* Whether an optimization is safe depends on the programming
language semantics.

— Languages that provide weaker guarantees to the programmer permit
more optimizations, but have more ambiguity in their behavior.

— e.g. In Java tail-call optimization (that turns recursive function calls into
loops) is not valid.

— e.g. In C, loading from initialized memory is undefined, so the compiler
can do anything.

« Example: loop-invariant code motion
— Idea: hoist invariant code out of a loop

while (b) { z = y/x;

z = y/x; while (b) {

// y, x not updated // y, x not updated
} }

e |s this more efficient?
e |s this safe?

CIS 341: Compilers 29

Constant Folding

* lIdea: If operands are known at compile type, perform the operation
statically.

int x = (2 + 3) *y = int x =5 * vy
b & false -=» false

« Performed at every stage of optimization...
* Why?
— Constant expressions can be created by translation or earlier
optimizations

« Example: A[2] might be compiled to:
MEM[MEM[A] + 2 * 4] = MEM[MEM[A] + 8]

CIS 341: Compilers

30

Constant Folding Conditionals

if (true) S > s
if (false) S = ;
if (true) S else S’ = S
if (false) S else S’ = S’
while (false) S = ;
if (2 > 3) S = ;

CIS 341: Compilers

Algebraic Simplification

More general form of constant folding
— Take advantage of mathematically sound simplification rules

|dentities:

—a *1=> a a*0=20
—a+ 0 =2 a a—0 =2 a
— b | false 2 b b & true 2 b

Reassociation & commutativity:

— (a+1)+2=>a+ (1+2)=>a+3

— (2 +a) +4=> (a+2)+4=>a+(2+4) =>a+6
Strength reduction: (replace expensive op with cheaper op)

— a * 4 - a << 2
— a * 7 > 4 (a << 3) — a
— a / 32767 > 4 (a >> 15) + (a >> 30)

Note 1: must be careful with floating point (due to rounding) and integer
arithmetic (due to overflow/underflow)

Note 2: iteration of these optimizations is useful... how much?

CIS 341: Compilers 32

Constant Propagation

 If the value is known to be a constant, replace the use of the variable
by the constant

 Value of the variable must be propagated forward from the point of
assignment

— This is a substitution operation

« Example:

int x = 5;

int y=x* 2; = int y =5 * 2; = inty = 10; =

int z = a[y]; int z = a[y]; int z = a[y]; int z = a[l0];

» To be most effective, constant propagation should be interleaved with

constant folding

CIS 341: Compilers

33

Copy Propagation

 If one variable is assigned to another, replace uses of the assigned
variable with the copied variable.

* Need to know where copies of the variable propagate.
* Interacts with the scoping rules of the language.

« Example:
X =Yy E=Yr
if (x > 1) { > 4 if (y > 1) {
x =x * f(x —1); X =y * f(y = 1);
} }

« Can make the first assignment to x dead code (that can be eliminated).

CIS 341: Compilers

34

Dead Code Elimination

« |f a side-effect free statement can never be observed, it is safe to
eliminate the statement.

x =y *y // x is dead!
// X never used =

« A variable is dead if it is never used after it is defined.

— Computing such definition and use information is an important
component of compiler

* Dead variables can be created by other optimizations...

CIS 341: Compilers 35

Unreachable/Dead Code

 Basic blocks not reachable by any trace leading from the starting basic
block are unreachable and can be deleted.

— Performed at the IR or assembly level
— Improves cache, TLB performance

* Dead code: similar to unreachable blocks.
— A value might be computed but never subsequently used.

* Code for computing the value can be dropped

« Butonly if it's pure, i.e. it has no externally visible side effects

— Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

— Note: Pure functional languages (e.g. Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 341: Compilers 36

Inlining

« Replace a call to a function with the body of the function itself with
arguments rewritten to be local variables:

* Example in OAT code:

int g(int x) { return x + pow(x); }

int pow(int a) { int b = 1; int n = 0;
while (n < a) {b = 2 * b}; return b; }

>

int g(int x) { int a = x; int b = 1; int n = 0;
while (n < a) {b =2 * b}; tmp = b; return x + tmp;

* May need to rename variable names to avoid name capture
— Example of what can go wrong?
* Best done at the AST or relatively high-level IR.
* When is it profitable?
— Eliminates the stack manipulation, jump, etc.
— Can increase code size.
— Enables further optimizations

CIS 341: Compilers

Code Specialization

* lIdea: create specialized versions of a function that is called from
different places with different arguments.

« Example: specialize function £ in:
class A implements I { int m() {..} }
class B implements I { int m() {..} }

int £(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

« £ A would have code specialized to dispatch to A.m
« £ B would have code specialized to dispatch to B.m

* You can also inline methods when the run-time type is known
statically
— Often just one class implements a method.

CIS 341: Compilers

38

Common Subexpression Elimination

* In some sense it’s the opposite of inlining: fold redundant
computations together

* Example:
a[i] = a[i] + 1 compiles to:
[a + i*4] = [a + i*4] + 1

Common subexpression elimination removes the redundant add and
multiply:
t = a + i*4; [t] = [t] + 1

* For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 341: Compilers 39

Unsafe Common Subexpression Elimination

« Example: consider this OAT function:
unit f£(int[] a, int[] b, int[] c) {
int J = ..; int i = ..; int k = ..;

U
—
.
[

Il

a[i] + 1; c[k] = a[i]; return;

» The following optimization that shares the expression a[i] is
unsafe... why?

unit f£(int[] a, int[] b, int[] c) {

int J = ..; int 1 = ..; int k = ..;
t = a[i];
b[j] =t + 1; c[k] = t; return;

CIS 341: Compilers 40

LOOP OPTIMIZATIONS

Zdancewic CIS 341: Compilers

Loop Optimizations

* Program hot spots often occur in loops.
— Especially inner loops

— Not always: consider operating systems code or compilers vs. a computer
game or word processor

* Most program execution time occurs in loops.

— The 90/10 rule of thumb holds here too. (90% of the execution time is
spent in 10% of the code)

* Loop optimizations are very important, effective, and numerous
— Also, concentrating effort to improve loop body code is usually a win

CIS 341: Compilers 42

Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

* If the result of a statement or expression does not change during the
loop and it’s pure, it can be hoisted outside the loop body.

« Often useful for array element addressing code
— Invariant code not visible at the source level

for (1 = 0; 1 < a.length; i++) {
/* a not modified in the body */

for (i =0; i < t; i++) {
/* same body as above */

}

CIS 341: Compilers 43

Strength Reduction (revisited)

 Strength reduction can work for loops too

* ldea: replace expensive operations (multiplies, divides) by cheap ones
(adds and subtracts)

* For loops, create a dependent induction variable:

* Example:

for (int i = 0; i<n; i++) { a[i*3] = 1; } //stride
by 3

int j = 0;

for (int i = 0; i<n; i++) {
afjl = 1;
j =3 + 3; //replace multiply by add

}

CIS 341: Compilers 44

Loop Unrolling (revisited)

* Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }

for (int 1i=0; i<n-3; 1i+=4) {S;S;S;S};
for (; i<n; i++) { S } //left over iterations

« With k unrollings, eliminates (k-1)/k conditional branches
— So for the above program, it eliminates % of the branches

» Space-time tradeoft:
— Not a good idea for large S or small n

* Interacts with instruction caching, branch prediction

CIS 341: Compilers 45

EFFECTIVENESS?

Zdancewic CIS 341: Compilers

Optimization Effectiveness?

‘2? 5509 | O LLVM-mem2reg _m LLVM-O1
< B LLVM-03 ® GCC-03
-
g
o
=
; I -
2
%26\?‘6%% \\Qe% g[,\? \]Q “\GS(A st ((\“\Q 0‘\)‘&56 Q‘A(SQJ \«0\& 'L\Ql ﬁ\cfi\ 6\2 \\)‘0 \‘0(0 ‘0\\ \6‘\%@6?;& 6\6@(\
WO
base time
_ 0
%speedup = —) -1 X 100%
optimized time
Example:
base time = 2s
optimized time = 1s = 100% speedup
Example:
base time = 1.2s
optimized time = 0.87s = 38% speedup

Graph taken from:

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.

Formal Verification of SSA-Based Optimizations for LLVM.

In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

Zdancewic CIS 341: Compilers 47

Optimization Effectiveness?

O LLVM-mem2reg @ LLVM-Ol1
@ LLVM-03 ® GCC-03

! /
= |||'I\' ik
'II NI !l Al Vi

%g @Q‘QSS '{\Qe% g)? < oo ast “\(0&? O&‘A\@ Q‘Z@e NQ\"X 1)@% ‘ch;\ 6\@& x\l‘“ o e \6‘\%@@‘ <& 6\6{&“
‘ oo G0

* mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

* Analysis:
— mem2reg alone (+ back-end optimizations like register allocation) yields
~78% speedup on average

— -O1 yields ~100% speedup
(so all the rest of the optimizations combined account for ~22%)

— -O3 yields ~120% speedup
* Hypothetical program that takes 10 sec. (base time):
— Mem2reg alone: expect ~5.6 sec
— -O1: expect ~5 sec
— -O3: expect ~4.5 sec

Zdancewic CIS 341: Compilers 48

