Lecture 24

CIS 341: COMPILERS

Announcements

« HW&6: Dataflow Analysis
— Due: Weds. April 26t

« FINAL EXAM: Thursday, May 4" noon — 2:00p.m.

Zdancewic CIS 341: Compilers 2

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers

Generalizing Dataflow Analyses

 The kind of iterative constraint solving used for liveness analysis
applies to other kinds of analyses as well.
— Reaching definitions analysis
— Available expressions analysis
— Alias Analysis
— Constant Propagation
— These analyses follow the same 3-step approach as for liveness.

* To see these as an instance of the same kind of algorithm, the next few
examples to work over a canonical intermediate instruction
representation called quadruples

— Allows easy definition of def[n] and use[n]

— A “looser” variant of LLVM'’s IR that doesn’t require the “static single
assignment” — i.e. it has mutable local variables

CIS 341: Compilers 4

Quadruple Format

* A Quadruple sequence is just a control-flow graph (flowgraph) where
each node is a quadruple:

e Quadruple forms n: def[n] use[n] description
a=bopc {a} {b,c} arithmetic
a=loadb {a} {b} load
store a :=b %) {b} store
a=fb,,...,b.) {a} {b,,...,b.,} call w/return
f(b,,...,b,) %) {b,,...,b,} call noreturn
br L %) %) jump
bra L1 L2 %) {a} branch
return a %) {a} return

CIS 341: Compilers

REACHING DEFINITIONS

Zdancewic CIS 341: Compilers

Reaching Definition Analysis

* Question: what uses in a program does a given variable definition
reach?

 This analysis is used for constant propagation & copy prop.

— If only one definition reaches a particular use, can replace use by the
definition (for constant propagation).

— Copy propagation additionally requires that the copied value still has its
same value — computed using an available expressions analysis (next)

* Input: Quadruple CFG

« Output: in[n] (resp. out[n]) is the set of nodes defining some variable
such that the definition may reach the beginning (resp. end) of node n

CIS 341: Compilers

Example of Reaching Definitions

* Results of computing reaching definitions on this simple CFG:

s
q
?

Fetu rn b *a

Note how SSA simplifies this analysis: |

out[T]: {1}
in[2]: {1}

*b

<—n < o |[e—

out[2]: {1,2}
in[3]: {1,2}

out[3]: {2,3}
in[4]: {2,3}

- each uid already uniquely names a node
- the "kill" information is unnecessary

CIS 341: Compilers

Reaching Definitions Step 1

 Define the sets of interest for the analysis
 Let defs[a] be the set of nodes that define the variable a
* Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen|[n] kill[n]
a=bopc {n} defs[a] - {n}
a=load b {n} defs[a] - {n}
storea :=b %) %)
a=f(by,...,b.) {n} defs[a] - {n}
f(by,...,b,) %) %)
br L %) %)
bra L1 L2 %) %)

L: %) %)
return a %) %)

CIS 341: Compilers

Reaching Definitions Step 2

 Define the constraints that a reaching definitions solution must satisfy.

* out[n] 2 gen[n]
“The definitions that reach the end of a node at least include the
definitions generated by the node”

* in[n] 2 out[n’] if n’isin pred|n]
“The definitions that reach the beginning of a node include those that
reach the exit of any predecessor”

e out[n] U kill[n] 2 in[n]
“The definitions that come in to a node either reach the end of the
node or are killed by it.”

— Equivalently: out[n] 2 in[n] - kill[n]

CIS 341: Compilers 10

Reaching Definitions Step 3

« Convert constraints to iterated update equations:

° in[n] = U n’Epred[n
* out[n] :=gen[n] U (in[n] - kill[n])

]out[n’]

 Algorithm: initialize in[n] and out[n] to @
— lIterate the update equations until a fixed point is reached

 The algorithm terminates because in[n] and out[n] increase only
monotonically

— At most to a maximum set that includes all variables in the program

 The algorithm is precise because it finds the smallest sets that satisfy
the constraints.

CIS 341: Compilers 11

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

* ldea: want to perform common subexpression elimination:
— a=x+1 a=x+1

l.:>“:x+1 [> I.o“:a

* This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).

— “x+1" is an available expression

 Dataflow values:
— in[n] = set of nodes whose values are available on entry to n
— out[n] = set of nodes whose values are available on exit of n

CIS 341: Compilers 13

Available Expressions Step 1

 Define the sets of values
» Define gen|[n] and kill[n] as follows:

* Quadruple forms n: gen|[n] kill[n]
a=bopc {n} - kill[n] uses|a]
a=loadb {n} - kill[n] uses|a]
storea:=b %) uses[[x]]

(for all x that may equal a)
br L % %)
bra L1 L2 % 0 e infomaton e
L: %) %
a=fby,...,b.) %) uses[a] U uses| [x]]

(for all x)

f(b,,...,b,) %) uses| [x]] (for all x)
return a %) %

Note that functions are
assumed to be impure...

CIS 341: Compilers 14

Available Expressions Step 2

« Define the constraints that an available expressions solution must
satisfy.

« out[n] 2 gen|n]
“The expressions made available by n that reach the end of the node”

* in[n] € out[n’] ifn’isin pred|[n]
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

« out[n] U kill[n] 2 in[n]
“The expressions available on entry either reach the end of the node
or are killed by it.”

— Equivalently: out[n] 2 in[n] - kill[n]

Note similarities and
differences with
constraints for
“reaching definitions”.

CIS 341: Compilers 15

Available Expressions Step 3

« Convert constraints to iterated update equations:

e In[n]:= ﬂ

* out[n] :=gen[n] U (in[n] - kill[n])

/
n’Epred[n]OuJ[[n]

« Algorithm: initialize in[n] and out[n] to {set of all nodes}
— lIterate the update equations until a fixed point is reached

 The algorithm terminates because in[n] and out[n] decrease only
monotonically

— At most to a minimum of the empty set

 The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 341: Compilers 16

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

Look at the update equations in the inner loop of the analyses

Liveness: (backward)
— Let gen[n] = use[n] and kill[n] = def[n]

— out[n] :== in[n’]

n’ €succ|n]

— in[n] := gen[n] U (out[n] - kill[n])

Reaching Definitions: (forward)
— inlnl = U | eqmoutin’]

— out[n] :=gen[n] U (in[n] - kill[n])

Available Expressions: (forward)
— in[n] := N v €predinOUIN’]

— out[n] :=gen[n] U (in[n] - kill[n])

CIS 341: Compilers

Common Features

« All of these analyses have a domain over which they solve constraints.
— Liveness, the domain is sets of variables
— Reaching defns., Available exprs. the domain is sets of nodes
 Each analysis has a notion of gen[n] and kill[n]
— Used to explain how information propagates across a node.
 Each analysis is propagates information either forward or backward
— Forward: in[n] defined in terms of predecessor nodes’ out]]
— Backward: out[n] defined in terms of successor nodes’ in[]
« Each analysis has a way of aggregating information
— Liveness & reaching definitions take union (U)
— Available expressions uses intersection (N)
— Union expresses a property that holds for some path (existential)
— Intersection expresses a property that holds for all paths (universal)

CIS 341: Compilers 19

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values £ l)
— e.g. L =the powerset of all variables
— Think of € L as a property, then “x € 2" n
means “x has the property” l F.(2)
2. For each node n, a flow function F,: L — L
— So far we've seen F_(2) = gen[n] U (2 - kill[n])
— So: out[n] = F(in[n])
— “If 2 is a property that holds before the node n,
then F_(2) holds after n” 4 2,
3. A combining operator M \/
— “If we know either 2, or 2, holds on entry
lQ1 ne,

to node n, we know at most 2, 1 £,”

- iﬂ[n] = ﬂn/epred[n]out[n/]

CIS 341: Compilers 20

Generic Iterative (Forward) Analysis

forall n, in[n] := T, out[n] :=T
repeat until no change

for all n
|n[n] .= Hn/Epred[n]OUt[ﬂ/]
out[n] :=F_(in[n])
end
end

* Here, T € L (“top”) represents having the “maximum” amount of
information.

— Having “more” information enables more optimizations
— “Maximum” amount could be inconsistent with the constraints.
— lIteration refines the answer, eliminating inconsistencies

CIS 341: Compilers 21

Structure of L

The domain has structure that reflects the “amount” of information
contained in each dataflow value.
Some dataflow values are more informative than others:
— Write £, £ 2, whenever 2, provides at least as much information as £,.
— The dataflow value ¢, is “better” for enabling optimizations.

Example 1: for liveness analysis, smaller sets of variables are more
informative.

— Having smaller sets of variables live across an edge means that there are
fewer conflicts for register allocation assignments.

— So: 2,CLQ ifandonlyif?, 2 ¢,

Example 2: for available expressions analysis, larger sets of nodes are
more informative.
— Having a larger set of nodes (equivalently, expressions) available means
that there is more opportunity for common subexpression elimination.
— So: 2, L ifandonlyif2, € ¢,

CIS 341: Compilers 22

L as a Partial Order

« Lis a partial order defined by the ordering relation C.
« A partial order is an ordered set.
* Some of the elements might be incomparable.
— That is, there might be £,, ¢, € L such that neither 2, £ 2, nor , C 2,

 Properties of a partial order:
— Reflexivity: 2EQ
— Transitivity: 2, £ 2, and €, E 2, implies 2, C ,
— Anti-symmetry: 2, £ 2, and 2, £ ¢, implies ¢, = €,

« Examples:
— Integers ordered by <
— Types ordered by <:
— Sets ordered by € or 2

CIS 341: Compilers 23

Subsets of {a,b,c} ordered by S

Partial order presented as a Hasse diagram.

{a,b,c}=T

Height is 3
—>
K
111
o
No

order C is & meet M is N join Uis U

CIS 341: Compilers 24

Meets and Joins

The combining operator 1 is called the “meet” operation.
It constructs the greatest lower bound:
— ¢ ne EQ and 2, N C &

“the meet is a lower bound”

— IfeEQ and? L 2, then2 C 2, M&,
“there is no greater lower bound”

Dually, the LI operator is called the “join” operation.
It constructs the least upper bound:
- 2 EQue and &, CE 2 18,

“the join is an upper bound”

— Ife, £ 2 and®?, C 2 thenQ, g2, C 2
“there is no smaller upper bound”

A partial order that has all meets and joins is called a /attice.
— If it has just meets, it’s called a meet semi-lattice.

CIS 341: Compilers

Building Lattices?

* Information about individual nodes or variables can be lifted
pointwise:

— If L is a lattice, then sois {f: X — L } where fC g if and only if
f(x) £ g(x) for all x € X,

+ Like types, the dataflow lattices are static approximations to the
dynamic behavior:

Any
— Could pick a lattice based on subtyping: 4/7&
Bool
Aliased /,f\ /\
— Or other information: T Jere A

Unaliased

* Points in the lattice are sometimes called dataflow “facts”

Zdancewic CIS 341: Compilers

Another Way to Describe the Algorithm

 Algorithm repeatedly computes (for each node n):
e out[n] :=F,(in[n])

» Equivalently: out[n] :=F (I'l out[n’])

n’ €pred[n
— By definition of in[n]
« We can write this as a simultaneous update of the vector of out|[n]
values:
— let x, = out[n]

— LetX =(x{, X,, ..., X, it'savector of points in L

- F(X) - (F1(I_|jepred[1]OUt[j])/ F2<|_|jepred[2]OUt[j])/ sy Fn(l_ljepred[n]OUt[j]))

* Any solution to the constraints is a fixpoint X of F
— p.e. FX) =X

CIS 341: Compilers 27

Iteration Computes Fixpoints

. LetX,=(T,T, ..., T

 Each loop through the algorithm apply F to the old vector:
X, = F(X,)
X, = F(X;)

+ FI(X) = F(F(X)

« A fixpoint is reached when FXX) = F<+1(X)
— That’s when the algorithm stops.

« Wanted: a maximal fixpoint
— Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 28

Monotonicity & Termination

Each flow function F, maps lattice elements to lattice elements; to be
sensible is should be monotonic:

F: L — L is monotonic iff:
2, £ 2, implies that F(2,) C F(2,)

— Intuitively: “If you have more information entering a node, then you have
more information leaving the node.”

Monotonicity lifts point-wise to the function: F : £ — L1
— vector (X;, X5, ..., X,) E (Y, Vo, ..., y,) iff x.Evy, foreachi

Note that F is consistent: F(X,) t X,

— So each iteration moves at least one step down the lattice (for some
component of the vector)

— ... EFFX)) E KX, E X,

Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 341: Compilers 29

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers

Best Possible Solution

Suppose we have a control-flow
graph.

If there is a path p, starting from the
root node (entry point of the
function) traversing the nodes

Ng, Ny, Ny, <. Ny

The best possible information along
the path p, is:

21 = Folo- Foa(Fy (Fo(M))...)

Best solution at the output is some
2L 2, for all paths p.

Meet-over-paths (MOP) solution:
n 0

p € paths_tol[n]

CIS 341: Compilers

W

Best answer here is:
Fe(F5(Fo(F{(T)) T1 Fo(F4(F,(F,(T))))

31

CIS 341: Compilers

What about quality of iterative solution?

Does the iterative solution: out[n] = Fn(ﬂn,epred[n]out[n’]) compute the
MOP solution?

MOP Solution: ['] 0,

p €paths_to[n

Answer: Yes, if the flow functions distribute over [1

— Distributive means: [1. F_(2) = F.(". 2)

— Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths...)

Not all analyses give MOP solution
— They are more conservative.

32

Reaching Definitions is MOP

F.[x] =gen[n] U (x - kill[n])

 Does F_ distribute over meet [1 =U?

 F Ixny]
= gen[n] U ((x U y) - kill[n])
= gen[n] U ((x - klll[n]) (y - kill[n]))
= (gen[n] U(x - kill[n])) U (gen[n] U (y - kill[n])
= F,Ix] U F,lyl
= F Ix] ['TF, [y]

 Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 341: Compilers

33

“Classic” Constant Propagation

+ Constant propagation can be formulated as a dataflow analysis.

* ldea: propagate and fold integer constants in one pass:
x=1; x=1;

y=5+Xx; |:> y = 0;

z=y*y, Z =30,

 Information about a single variable:
— Variable is never defined.
— Variable has a single, constant value.
— Variable is assigned multiple values.

CIS 341: Compilers

34

CIS 341: Compilers

Domains for Constant Propagation

We can make a constant propagation lattice L for one variable like
this:

T = multiple values

— X

., -3,-2,-1,0,1,2,3, ...

W

1 = never defined
To accommodate multiple variables, we take the product lattice, with
one element per variable.

— Assuming there are three variables, x, y, and z, the elements of the
product lattice are of the form (¢, 2., 2,)

X/ yr “z/e
— Alternatively, think of the product domain as a context that maps variable
names to their “abstract interpretations”

What are “meet” and “join” in this product lattice?
What is the height of the product lattice?

Flow Functions

Consider the node x =y op z

F@, 2, 0,) =2

F(Qx/ T/ Q‘Z) = (T/ T/ QZ)
Fe, 2, T)=(T, 2, T)
FQ, L, 2)=(L, L,2) |

FQ, 2, 1) =(L, 8, 1)

—

=

FQ,1,))=@0op] 1)

_ “If either input might have multiple values
the result of the operation might too.”

_ “If either input is undefined
the result of the operation is too.”

__"If the inputs are known constants,

—

calculate the output statically.”

Flow functions for the other nodes are easy...

Monotonic?
Distributes over meets?

CIS 341: Compilers

CIS 341: Compilers

Iterative Solution

(L, L, 1)
if x>0

(L, 1, y \f 1,1

y=2

¢,1,¢l

lu, 2, 1)

z=1

(L, 1,2)

(L, 2,1)

(L, 1,2)n(L, 2, 1)=(L, T,T)

X=Yy+2z

l (T, T, T) iterative solution

37

MOP Solution # Iterative Solution

(L, L, 1)
if x>0

(L, L,y \f 1,1
=1

y
(L1, 1) l lu, 2, 1)

y=2

z=1

MOP solution (3,1,2)11(3,2,1)=@3, T, T)

CIS 341: Compilers

Why not compute MOP Solution?

« If MOP is better than the iterative analysis, why not compute it instead?
— ANS: exponentially many paths (even in graph without loops)

« O(n
* O(n) edges
« O(2" paths*

— At each branch

there is a choice
of 2 directions

) nodes

* Incidentally, a similar idea

can be used to force ML / Haskell
type inference to need to construct
a type that is exponentially big

in the size of the program!

K HKpHKOE-

Zdancewic CIS 341: Compilers

Dataflow Analysis: Summary

« Many dataflow analyses fit into a common framework.

« Key idea: lterative solution of a system of equations over a lattice of
constraints.

— lteration terminates if flow functions are monotonic.

— Solution is equivalent to meet-over-paths answer if the flow functions
distribute over meet ().

« Dataflow analyses as presented work for an “imperative” intermediate
representation.

— The values of temporary variables are updated (“mutated”) during
evaluation.

— Such mutation complicates calculations

— SSA = “Single Static Assignment” eliminates this problem, by introducing
more temporaries — each one assigned to only once.

— Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 40

