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Announcements 

•  HW6: Dataflow Analysis 
–  Due:  Weds. April 26th 

 
 
 
 
 

•  FINAL EXAM 
–  Thursday, May 4th noon – 2:00p.m. 
–  Location:  DRLB A4 
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NOTE: See Piazza for an update… �
TLDR: "simple" regalloc should not suffice.�

    Change gradedtests.ml  >= to > 



LOOPS AND DOMINATORS 
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Loops in Control-flow Graphs 
•  Taking into account loops is important for optimizations. 

–  The 90/10 rule applies, so optimizing loop bodies is important 

•  Should we apply loop optimizations at the AST level or at a lower 
representation? 
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them. 

•  Loops may be hard to recognize at the quadruple / LLVM IR level. 
–  Many kinds of loops: while, do/while, for, continue, goto… 

•  Problem: How do we identify loops in the control-flow graph? 
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Definition of a Loop 
•  A loop is a set of nodes in the control flow graph. 

–  One distinguished entry point called the header 

•  Every node is reachable �
from the header &�
the header is reachable �
from every node. 
–  A loop is a strongly �

connected component 

•  No edges enter the loop �
except to the header 

•  Nodes with outgoing edges �
are called loop exit nodes 

CIS 341: Compilers 5 

header 

exit node 

loop 
nodes 



Nested Loops 
•  Control-flow graphs may contain many loops 
•  Loops may contain other loops: 
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Control Tree: 

The control tree �
depicts the nesting�
structure of the �
loops in the program. 



Control-flow Analysis 
•  Goal: Identify the loops and nesting structure of the CFG. 

•  Control flow analysis is based on the idea of dominators: 
•  Node A dominates node B if the only way to reach B from the start 

node is through node A. 

•  An edge in the graph �
is a back edge if the �
target node dominates�
the source node. 

•  A loop contains at least�
one back edge.�
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Back Edge 



Dominator Trees 
•  Domination is transitive:  

–  if A dominates B and B dominates C then A dominates C 

•  Domination is anti-symmetric:  
–  if A dominates B and B dominates A then A = B 

•  Every flow graph has a dominator tree 
–  The Hasse diagram of the dominates relation 
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Dominator Dataflow Analysis 
•  We can define Dom[n] as a forward dataflow analysis. 

–  Using the framework we saw earlier:  Dom[n] = out[n] where: 

•  “A node B is dominated by another node A if A dominates all of the 
predecessors of B.” 

–  in[n] := ∩n’∈pred[n]out[n’] 

•  “Every node dominates itself.” 
–  out[n] := in[n]  ∪ {n} 

•  Formally:  L = set of nodes ordered by ⊆ 
–  T = {all nodes} 
–  Fn(x) = x ∪ {n} 
–  ⨅  is ∩  

•  Easy to show monotonicity and that Fn distributes over meet. 
–  So algorithm terminates and is MOP 
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Improving the Algorithm 
•  Dom[b] contains just those nodes along the path in the dominator tree 

from the root to b: 
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7} 
–  There is a lot of sharing among the nodes 

•  More efficient way to represent Dom sets is�
to store the dominator tree. 
–  doms[b] = immediate dominator of b 
–  doms[8] = 4, doms[7] = 5 

•  To compute Dom[b] walk through doms[b] 
•  Need to efficiently compute intersections�

 of Dom[a] and Dom[b] 
–  Traverse up tree, looking for least common �

ancestor: 
–  Dom[8] ∩Dom[7] = Dom[4] 

 
•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy 
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Completing Control-flow Analysis 
•  Dominator analysis identifies back edges: 

–  Edge n à h where h dominates n 

•  Each back edge has a natural loop: 
–  h is the header 
–  All nodes reachable from h that also reach�

n without going through h 

•  For each back edge n à h, find the natural loop: 
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h} 

•  Two loops may share the same header: �
merge them 

•  Nesting structure of loops is determined by set inclusion 
–  Can be used to build the control tree  
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Example Natural Loops 
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Uses of Control-flow Information 
•  Loop nesting depth plays an important role in optimization heuristics. 

–  Deeply nested loops pay off the most for optimization. 

•  Need to know loop headers / back edges for doing 
–  loop invariant code motion 
–  loop unrolling 

•  Dominance information also plays a role in converting to SSA form 
–  Used internally by LLVM to do register allocation. 
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REVISITING SSA 
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Phi nodes 
Alloc “promotion” 
Register allocation 
 
�
 
 



Single Static Assignment (SSA) 
•  LLVM IR names (via %uids) all intermediate values computed by the 

program. 
•  It makes the order of evaluation explicit. 
•  Each %uid is assigned to only once 

–  Contrast with the mutable quadruple form 
–  Note that dataflow analyses had these kill[n] sets because of updates to 

variables… 
•  Naïve implementation of backend: map %uids to stack slots 
•  Better implementation: map %uids to registers (as much as possible) 

•  Question: How do we convert a source program to make maximal use 
of %uids, rather than alloca-created storage? 
–  two problems: control flow & location in memory 

•  Then: How do we convert SSA code to x86, mapping %uids to 
registers? 
–  Register allocation. 
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Alloca vs. %UID 
•  Current compilation strategy: 

•  Directly map source variables into %uids? 

•  Does this always work? 
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int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2 
store i64* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2



What about If-then-else? 
•  How do we translate this into SSA? 

•  What do we put for ???
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %z2 = %add i64 ???, 3



Phi Functions 
•  Solution: φ functions  

–  Fictitious operator, used only for analysis  
•  implemented by Mov at x86 level 

–  Chooses among different versions of a variable based on the path by 
which control enters the phi node.�
%uid = phi <ty>  v1, <label1>, … , vn, <labeln>

Zdancewic     CIS 341: Compilers     18 

int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %x4 = phi i64 %x2, %then, %x3, %else
  %z2 = %add i64 %x4, 3



Phi Nodes and Loops 
•  Importantly, the %uids on the right-hand side of a phi node can be 

defined “later” in the control-flow graph. 
–  Means that %uids can hold values “around a loop” 

–  Scope of %uids is defined by dominance (discussed soon) 
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entry:
  %y1 = …
  %x1 = …
  br label %body

body:
  %x2 = phi i64 %x1, %entry, %x3, %body
  %x3 = add i64 %x2, %y1
  %p = icmp slt i64, %x3, 10
  br i1 %p, label %body, label %after

after:
  …  



Alloca Promotion 
•  Not all source variables can be allocated to registers 

–  If the address of the variable is taken (as permitted in C, for example) 
–  If the address of the variable “escapes” (by being passed to a function) 

•  An alloca instruction is called promotable if neither of the two 
conditions above holds 

•  Happily, most local variables declared in source programs are 
promotable 
–  That means they can be register allocated 

Zdancewic     CIS 341: Compilers     20 

entry:
  %x = alloca i64          // %x cannot be promoted
  %y = call malloc(i64 8)
  %ptr = bitcast i8* %y to i64**
  store i65** %ptr, %x     // store the pointer into the heap

entry:
  %x = alloca i64        // %x cannot be promoted
  %y = call foo(i64* %x) // foo may store the pointer into the heap



Converting to SSA: Overview 
•  Start with the ordinary control flow graph that uses allocas 

–  Identify “promotable” allocas 

•  Compute dominator tree information 
•  Calculate def/use information for each such allocated variable 
•  Insert φ functions for each variable at necessary “join points” 

•  Replace loads/stores to alloc’ed variables with freshly-generated 
%uids 

•  Eliminate the now unneeded load/store/alloca instructions. 
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Where to Place φ functions?  
•  Need to calculate the “Dominance Frontier” 

•  Node A strictly dominates node B if A dominates B and A ≠ B. 
–  Note: A does not strictly dominate B if A does not dominate B or A = B. 

•  The dominance frontier of a node B is the set of all CFG nodes y such 
that B dominates a predecessor of y but does not strictly dominate y 
–  Intuitively: starting at B, there is a path to y, but there is another route to y 

that does not go through B 

•  Write DF[n] for the dominance frontier of node n. 
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Dominance Frontiers 
•  Example of a dominance frontier calculation results 
•  DF[1] = {1},   DF[2] = {1,2},   DF[3] = {2},  DF[4] = {1}, DF[5] = {8,0},�

DF[6] = {8},  DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {} 
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Algorithm For Computing DF[n] 
•  Assume that doms[n] stores the dominator tree (so that �

doms[n] is the immediate dominator of n in the tree) 

•  Adds each B to the DF sets to which it belongs 

for all nodes B  
 if #(pred[B]) ≥ 2                       // (just an optimization) 
  for each p ∈pred[B] { 
   runner := p                          // start at the predecessor of B 
   while (runner ≠ doms[B])  // walk up the tree adding B 
    DF[runner] := DF[runner] ∪ {B}�
         runner := doms[runner] 

     } 
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Insert φ at Join Points 
•  Lift the DF[n] to a set of nodes N in the obvious way:�

DF[N] = ∪n∈NDF[n] 
•  Suppose that at variable x is defined at a set of nodes N. 
•  DF0[N] = DF[N]�

DFi+1[N] = DF[DFi[N] ∪ N] 
•  Let J[N] be the least fixed point of the sequence:�

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆… 
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N] 

•  J[N] is called the “join points” for the set N 
•  We insert φ functions for the variable x at each such join point. 

–  x  = φ(x, x, …, x);   (one “x” argument for each predecessor of the node) 
–  In practice, J[N] is never directly computed, instead you use a worklist 

algorithm that keeps adding nodes for  DFk[N] until there are no changes. 

•  Intuition:   
–  If N is the set of places where x is modified, then DF[N] is the places where 

phi nodes need to be added, but those also “count” as modifications of x, so 
we need to insert the phi nodes to capture those modifications too… 
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Example Join-point Calculation 
•  Suppose the variable x is modified at nodes 3 and 6 

–  Where would we need to add phi nodes? 

•  DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8} 
•  DF1[{3,6}] �

  =  DF[DF0{3,6} ∪ {3,6}] �
  =  DF[{2,3,6,8}] �
  =  DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8] �
  =  {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0} 

•  DF2[{3,6}] �
  =  ... �
  =  {1,2,8,0}  

•  So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four 
spots. 
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Phi Placement Alternative 
•  Less efficient, but easier to understand: 

•  Place phi nodes "maximally" (i.e. at every node with > 2 predecessors) 

•  If all values flowing into phi node are the same, then eliminate it: 
%x = phi   t %y, %pred1   t %y  %pred2  … t %y %predK
// code that uses %x
⇒

// code with %x replaced by %y

•  Interleave with other optimizations 
–  copy propagation 
–  constant propagation 
–  etc. 
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Example SSA Optimizations 

•  How to place phi 
nodes without 
breaking SSA? 

•  Note: the “real” 
implementation 
combines many of these 
steps into one pass. 
–  Places phis directly at the 

dominance frontier 

•  This example also 
illustrates other common 
optimizations: 
–  Load after store/alloca 
–  Dead store/alloca 

elimination 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

–  Insert φ-nodes 
at each block 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

–  Insert φ-nodes 
at each block 

–  Insert stores 
after φ-nodes  

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  Dead Store 
Elimination (DSE) 
–  Eliminate all 

stores with no 
subsequent 
loads. 

•  Dead Alloca 
Elimination (DAE) 
–  Eliminate all 

allocas with no 
subsequent 
loads/stores. 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

•  Dead Store 
Elimination (DSE) 
–  Eliminate all 

stores with no 
subsequent 
loads. 

•  Dead Alloca 
Elimination (DAE) 
–  Eliminate all 

allocas with no 
subsequent 
loads/stores. 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 



Example SSA Optimizations 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 

•  Eliminate φ	nodes: 
–  Singletons 
–  With identical 

values from 
each 
predecessor 

–  See Aycock & 
Horspool, 2002 



Example SSA Optimizations 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φs 

Find	
alloca 

•  Eliminate φ	nodes: 
–  Singletons 
–  With identical 

values from 
each 
predecessor 



Example SSA Optimizations 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: 
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	φs 

LAS/
LAA 

DSE 

DAE 

elim	φ 

Find	
alloca 

•  Done! 



LLVM Phi Placement  
•  This transformation is also sometimes called register promotion 

–  older versions of LLVM called this “mem2reg” memory to register 
promotion 

•  In practice, LLVM combines this transformation with scalar 
replacement of aggregates (SROA) 
–  i.e. transforming loads/stores of structured data into loads/stores on 

register-sized data 

•  These algorithms are (one reason) why LLVM IR allows annotation of 
predecessor information in the .ll files 
–  Simplifies computing the DF 
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FINAL EXAM 
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Thursday, May 4th noon – 2:00p.m. 
Location:  DRLB A4 

 
�
 
 



Final Exam 
•  Will cover material since the midterm almost exclusively 

–  Starting from Lecture 14  
–  Typechecking 
–  Objects, inheritance, types, implementation of dynamic dispatch 
–  Basic optimizations 
–  Dataflow analysis (forward vs. backward, fixpoint computations, etc.) 

•  Liveness 

–  Graph-coloring Register Allocation 
–  Control flow analysis 

•  Loops, dominator trees 

•  Will focus more on the theory side of things 
•  Format will be similar to the midterm 

–  Simple answer, computation, multiple choice, etc. 
–  Sample exam from last time is on the web 
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COURSE WRAP-UP 
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What have we learned? 
Where else is it applicable? 
What next? 
 
�
 
 



Why CIS 341? 
•  You will learn: 

–  Practical applications of theory  
–  Parsing 
–  How high-level languages are implemented in machine language 
–  (A subset of) Intel x86 architecture 
–  A deeper understanding of code 
–  A little about programming language semantics 
–  Functional programming in OCaml 
–  How to manipulate complex data structures 
–  How to be a better programmer 

•  Did we meet these goals? 
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Stuff we didn’t Cover 
•  We skipped stuff at every level… 
•  Concrete syntax/parsing:   

–  Much more to the theory of parsing… 
–  Good syntax is art not science! 

•  Source language features: 
–  Exceptions, recursive data types (easy!), advanced type systems, type 

inference, concurrency 
•  Intermediate languages: 

–  Intermediate language design, bytecode, bytecode interpreters, just-in-
time compilation (JIT) 

•  Compilation: 
–  Continuation-passing transformation, efficient representations, scalability 

•  Optimization: 
–  Scientific computing, cache optimization, instruction selection/

optimization 
•  Runtime support: 

–  memory management, garbage collections 
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Related Courses 
•  CIS 500: Software Foundations 

–  Prof. Pierce 
–  Theoretical course about functional programming, proving program 

properties, type systems, lambda calculus.  Uses the theorem prover Coq. 

•  CIS 501: Computer Architecture 
–  Prof. Devietti 
–  371++: pipelining, caches, VM, superscalar, multicore,… 

•  CIS 552: Advanced Programming 
–  Prof. Weirich  
–  Advanced functional programming in Haskell, including generic 

programming, metaprogramming, embedded languages, cool tricks with 
fancy type systems 

•  CIS 670: Special topics in programming languages 
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Where to go from here? 
•  Conferences  (proceedings available on the web):  

–  Programming Language Design and Implementation (PLDI) 
–  Principles of Programming Langugaes (POPL) 
–  Object Oriented Programming Systems, Languages & Applications 

(OOPSLA) 
–  International Conference on Functional Programming  (ICFP) 
–  European Symposium on Programming (ESOP) 
–  … 

•  Technologies / Open Source Projects 
–  Yacc, lex, bison, flex, … 
–  LLVM – low level virtual machine 
–  Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR) 
–  Languages: OCaml, F#, Haskell, Scala, Go, Rust, …? 
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Where else is this stuff applicable? 
•  General programming 

–  In C/C++, better understanding of how the compiler works can help you 
generate better code. 

–  Ability to read assembly output from compiler 
–  Experience with functional programming can give you different ways to 

think about how to solve a problem 

•  Writing domain specific languages 
–  lex/yacc very useful for little utilities 
–  understanding abstract syntax and interpretation 

•  Understanding hardware/software interface 
–  Different devices have different instruction sets, programming models 
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Thanks! 
•  To the TAs: Dmitri, Richard, J.J. and Vivek 

–  for doing an amazing job putting together the projects for the course. 

•  To you for taking the class!  

•  How can I improve the course? 
–  Feedback survey posted to Piazza (soon!) 
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