
CIS 341: COMPILERS
Lecture 25

Announcements

•  HW6: Dataflow Analysis
–  Due: Weds. April 26th

•  FINAL EXAM
–  Thursday, May 4th noon – 2:00p.m.
–  Location: DRLB A4

Zdancewic CIS 341: Compilers 2

NOTE: See Piazza for an update… �
TLDR: "simple" regalloc should not suffice.�

 Change gradedtests.ml >= to >

LOOPS AND DOMINATORS

Zdancewic CIS 341: Compilers 3

�

Loops in Control-flow Graphs
•  Taking into account loops is important for optimizations.

–  The 90/10 rule applies, so optimizing loop bodies is important

•  Should we apply loop optimizations at the AST level or at a lower
representation?
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

•  Loops may be hard to recognize at the quadruple / LLVM IR level.
–  Many kinds of loops: while, do/while, for, continue, goto…

•  Problem: How do we identify loops in the control-flow graph?

CIS 341: Compilers 4

Definition of a Loop
•  A loop is a set of nodes in the control flow graph.

–  One distinguished entry point called the header

•  Every node is reachable �
from the header &�
the header is reachable �
from every node.
–  A loop is a strongly �

connected component

•  No edges enter the loop �
except to the header

•  Nodes with outgoing edges �
are called loop exit nodes

CIS 341: Compilers 5

header

exit node

loop
nodes

Nested Loops
•  Control-flow graphs may contain many loops
•  Loops may contain other loops:

CIS 341: Compilers 6

Control Tree:

The control tree �
depicts the nesting�
structure of the �
loops in the program.

Control-flow Analysis
•  Goal: Identify the loops and nesting structure of the CFG.

•  Control flow analysis is based on the idea of dominators:
•  Node A dominates node B if the only way to reach B from the start

node is through node A.

•  An edge in the graph �
is a back edge if the �
target node dominates�
the source node.

•  A loop contains at least�
one back edge.�

CIS 341: Compilers 7

Back Edge

Dominator Trees
•  Domination is transitive:

–  if A dominates B and B dominates C then A dominates C

•  Domination is anti-symmetric:
–  if A dominates B and B dominates A then A = B

•  Every flow graph has a dominator tree
–  The Hasse diagram of the dominates relation

CIS 341: Compilers 8

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Dominator Dataflow Analysis
•  We can define Dom[n] as a forward dataflow analysis.

–  Using the framework we saw earlier: Dom[n] = out[n] where:

•  “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

–  in[n] := ∩n’∈pred[n]out[n’]

•  “Every node dominates itself.”
–  out[n] := in[n] ∪ {n}

•  Formally: L = set of nodes ordered by ⊆
–  T = {all nodes}
–  Fn(x) = x ∪ {n}
–  ⨅ is ∩

•  Easy to show monotonicity and that Fn distributes over meet.
–  So algorithm terminates and is MOP

CIS 341: Compilers 9

Improving the Algorithm
•  Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
–  There is a lot of sharing among the nodes

•  More efficient way to represent Dom sets is�
to store the dominator tree.
–  doms[b] = immediate dominator of b
–  doms[8] = 4, doms[7] = 5

•  To compute Dom[b] walk through doms[b]
•  Need to efficiently compute intersections�

 of Dom[a] and Dom[b]
–  Traverse up tree, looking for least common �

ancestor:
–  Dom[8] ∩Dom[7] = Dom[4]

•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy

CIS 341: Compilers 10

1

2

3

4

5

6

7

8

9

0

Completing Control-flow Analysis
•  Dominator analysis identifies back edges:

–  Edge n à h where h dominates n

•  Each back edge has a natural loop:
–  h is the header
–  All nodes reachable from h that also reach�

n without going through h

•  For each back edge n à h, find the natural loop:
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h}

•  Two loops may share the same header: �
merge them

•  Nesting structure of loops is determined by set inclusion
–  Can be used to build the control tree

CIS 341: Compilers 11

h

n

h

n

m

Example Natural Loops

CIS 341: Compilers 12

1

2

3

4

5

6

7

8

9

0

Control Tree:

The control tree �
depicts the nesting�
structure of the �
program.

Natural Loops

Uses of Control-flow Information
•  Loop nesting depth plays an important role in optimization heuristics.

–  Deeply nested loops pay off the most for optimization.

•  Need to know loop headers / back edges for doing
–  loop invariant code motion
–  loop unrolling

•  Dominance information also plays a role in converting to SSA form
–  Used internally by LLVM to do register allocation.

CIS 341: Compilers 13

REVISITING SSA

Zdancewic CIS 341: Compilers 14

Phi nodes
Alloc “promotion”
Register allocation

�

Single Static Assignment (SSA)
•  LLVM IR names (via %uids) all intermediate values computed by the

program.
•  It makes the order of evaluation explicit.
•  Each %uid is assigned to only once

–  Contrast with the mutable quadruple form
–  Note that dataflow analyses had these kill[n] sets because of updates to

variables…
•  Naïve implementation of backend: map %uids to stack slots
•  Better implementation: map %uids to registers (as much as possible)

•  Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
–  two problems: control flow & location in memory

•  Then: How do we convert SSA code to x86, mapping %uids to
registers?
–  Register allocation.

CIS 341: Compilers 15

Alloca vs. %UID
•  Current compilation strategy:

•  Directly map source variables into %uids?

•  Does this always work?

Zdancewic CIS 341: Compilers 16

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2
store i64* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2

What about If-then-else?
•  How do we translate this into SSA?

•  What do we put for ???

CIS 341: Compilers 17

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i64 %y1, 1
 br label %merge
else:
 %x3 = mult i64 %y1, 2
merge:
 %z2 = %add i64 ???, 3

Phi Functions
•  Solution: φ functions

–  Fictitious operator, used only for analysis
•  implemented by Mov at x86 level

–  Chooses among different versions of a variable based on the path by
which control enters the phi node.�
%uid = phi <ty> v1, <label1>, … , vn, <labeln>

Zdancewic CIS 341: Compilers 18

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i64 %y1, 1
 br label %merge
else:
 %x3 = mult i64 %y1, 2
merge:
 %x4 = phi i64 %x2, %then, %x3, %else
 %z2 = %add i64 %x4, 3

Phi Nodes and Loops
•  Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.
–  Means that %uids can hold values “around a loop”

–  Scope of %uids is defined by dominance (discussed soon)

Zdancewic CIS 341: Compilers 19

entry:
 %y1 = …
 %x1 = …
 br label %body

body:
 %x2 = phi i64 %x1, %entry, %x3, %body
 %x3 = add i64 %x2, %y1
 %p = icmp slt i64, %x3, 10
 br i1 %p, label %body, label %after

after:
 …

Alloca Promotion
•  Not all source variables can be allocated to registers

–  If the address of the variable is taken (as permitted in C, for example)
–  If the address of the variable “escapes” (by being passed to a function)

•  An alloca instruction is called promotable if neither of the two
conditions above holds

•  Happily, most local variables declared in source programs are
promotable
–  That means they can be register allocated

Zdancewic CIS 341: Compilers 20

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call malloc(i64 8)
 %ptr = bitcast i8* %y to i64**
 store i65** %ptr, %x // store the pointer into the heap

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call foo(i64* %x) // foo may store the pointer into the heap

Converting to SSA: Overview
•  Start with the ordinary control flow graph that uses allocas

–  Identify “promotable” allocas

•  Compute dominator tree information
•  Calculate def/use information for each such allocated variable
•  Insert φ functions for each variable at necessary “join points”

•  Replace loads/stores to alloc’ed variables with freshly-generated
%uids

•  Eliminate the now unneeded load/store/alloca instructions.

CIS 341: Compilers 21

Where to Place φ functions?
•  Need to calculate the “Dominance Frontier”

•  Node A strictly dominates node B if A dominates B and A ≠ B.
–  Note: A does not strictly dominate B if A does not dominate B or A = B.

•  The dominance frontier of a node B is the set of all CFG nodes y such
that B dominates a predecessor of y but does not strictly dominate y
–  Intuitively: starting at B, there is a path to y, but there is another route to y

that does not go through B

•  Write DF[n] for the dominance frontier of node n.

CIS 341: Compilers 22

Dominance Frontiers
•  Example of a dominance frontier calculation results
•  DF[1] = {1}, DF[2] = {1,2}, DF[3] = {2}, DF[4] = {1}, DF[5] = {8,0},�

DF[6] = {8}, DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 341: Compilers 23

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Control-flow Graph Dominator Tree

Algorithm For Computing DF[n]
•  Assume that doms[n] stores the dominator tree (so that �

doms[n] is the immediate dominator of n in the tree)

•  Adds each B to the DF sets to which it belongs

for all nodes B
 if #(pred[B]) ≥ 2 // (just an optimization)
 for each p ∈pred[B] {
 runner := p // start at the predecessor of B
 while (runner ≠ doms[B]) // walk up the tree adding B
 DF[runner] := DF[runner] ∪ {B}�
 runner := doms[runner]

 }

CIS 341: Compilers 24

Insert φ at Join Points
•  Lift the DF[n] to a set of nodes N in the obvious way:�

DF[N] = ∪n∈NDF[n]
•  Suppose that at variable x is defined at a set of nodes N.
•  DF0[N] = DF[N]�

DFi+1[N] = DF[DFi[N] ∪ N]
•  Let J[N] be the least fixed point of the sequence:�

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]

•  J[N] is called the “join points” for the set N
•  We insert φ functions for the variable x at each such join point.

–  x = φ(x, x, …, x); (one “x” argument for each predecessor of the node)
–  In practice, J[N] is never directly computed, instead you use a worklist

algorithm that keeps adding nodes for DFk[N] until there are no changes.

•  Intuition:
–  If N is the set of places where x is modified, then DF[N] is the places where

phi nodes need to be added, but those also “count” as modifications of x, so
we need to insert the phi nodes to capture those modifications too…

CIS 341: Compilers 25

Example Join-point Calculation
•  Suppose the variable x is modified at nodes 3 and 6

–  Where would we need to add phi nodes?

•  DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8}
•  DF1[{3,6}] �

 = DF[DF0{3,6} ∪ {3,6}] �
 = DF[{2,3,6,8}] �
 = DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8] �
 = {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0}

•  DF2[{3,6}] �
 = ... �
 = {1,2,8,0}

•  So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four
spots.

Zdancewic CIS 341: Compilers 26

Phi Placement Alternative
•  Less efficient, but easier to understand:

•  Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

•  If all values flowing into phi node are the same, then eliminate it:
%x = phi t %y, %pred1 t %y %pred2 … t %y %predK
// code that uses %x
⇒

// code with %x replaced by %y

•  Interleave with other optimizations
–  copy propagation
–  constant propagation
–  etc.

Zdancewic CIS 341: Compilers 27

Example SSA Optimizations

•  How to place phi
nodes without
breaking SSA?

•  Note: the “real”
implementation
combines many of these
steps into one pass.
–  Places phis directly at the

dominance frontier

•  This example also
illustrates other common
optimizations:
–  Load after store/alloca
–  Dead store/alloca

elimination

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2:

 store 1, %p

 br %l3

l3:

 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2:

 store 1, %p
 %x2 = load %p
 br %l3

l3:

 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

–  Insert φ-nodes
at each block

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]

 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]

 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

–  Insert φ-nodes
at each block

–  Insert stores
after φ-nodes

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  Dead Store
Elimination (DSE)
–  Eliminate all

stores with no
subsequent
loads.

•  Dead Alloca
Elimination (DAE)
–  Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

•  Dead Store
Elimination (DSE)
–  Eliminate all

stores with no
subsequent
loads.

•  Dead Alloca
Elimination (DAE)
–  Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

•  Eliminate φ	nodes:
–  Singletons
–  With identical

values from
each
predecessor

–  See Aycock &
Horspool, 2002

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φs

Find	
alloca

•  Eliminate φ	nodes:
–  Singletons
–  With identical

values from
each
predecessor

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2:

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	φs

LAS/
LAA

DSE

DAE

elim	φ

Find	
alloca

•  Done!

LLVM Phi Placement
•  This transformation is also sometimes called register promotion

–  older versions of LLVM called this “mem2reg” memory to register
promotion

•  In practice, LLVM combines this transformation with scalar
replacement of aggregates (SROA)
–  i.e. transforming loads/stores of structured data into loads/stores on

register-sized data

•  These algorithms are (one reason) why LLVM IR allows annotation of
predecessor information in the .ll files
–  Simplifies computing the DF

Zdancewic CIS 341: Compilers 44

FINAL EXAM

Zdancewic CIS 341: Compilers 45

Thursday, May 4th noon – 2:00p.m.
Location: DRLB A4

�

Final Exam
•  Will cover material since the midterm almost exclusively

–  Starting from Lecture 14
–  Typechecking
–  Objects, inheritance, types, implementation of dynamic dispatch
–  Basic optimizations
–  Dataflow analysis (forward vs. backward, fixpoint computations, etc.)

•  Liveness

–  Graph-coloring Register Allocation
–  Control flow analysis

•  Loops, dominator trees

•  Will focus more on the theory side of things
•  Format will be similar to the midterm

–  Simple answer, computation, multiple choice, etc.
–  Sample exam from last time is on the web

CIS 341: Compilers 46

COURSE WRAP-UP

Zdancewic CIS 341: Compilers 47

What have we learned?
Where else is it applicable?
What next?

�

Why CIS 341?
•  You will learn:

–  Practical applications of theory
–  Parsing
–  How high-level languages are implemented in machine language
–  (A subset of) Intel x86 architecture
–  A deeper understanding of code
–  A little about programming language semantics
–  Functional programming in OCaml
–  How to manipulate complex data structures
–  How to be a better programmer

•  Did we meet these goals?

CIS 341: Compilers 48

Stuff we didn’t Cover
•  We skipped stuff at every level…
•  Concrete syntax/parsing:

–  Much more to the theory of parsing…
–  Good syntax is art not science!

•  Source language features:
–  Exceptions, recursive data types (easy!), advanced type systems, type

inference, concurrency
•  Intermediate languages:

–  Intermediate language design, bytecode, bytecode interpreters, just-in-
time compilation (JIT)

•  Compilation:
–  Continuation-passing transformation, efficient representations, scalability

•  Optimization:
–  Scientific computing, cache optimization, instruction selection/

optimization
•  Runtime support:

–  memory management, garbage collections

CIS 341: Compilers 49

Related Courses
•  CIS 500: Software Foundations

–  Prof. Pierce
–  Theoretical course about functional programming, proving program

properties, type systems, lambda calculus. Uses the theorem prover Coq.

•  CIS 501: Computer Architecture
–  Prof. Devietti
–  371++: pipelining, caches, VM, superscalar, multicore,…

•  CIS 552: Advanced Programming
–  Prof. Weirich
–  Advanced functional programming in Haskell, including generic

programming, metaprogramming, embedded languages, cool tricks with
fancy type systems

•  CIS 670: Special topics in programming languages

CIS 341: Compilers 50

Where to go from here?
•  Conferences (proceedings available on the web):

–  Programming Language Design and Implementation (PLDI)
–  Principles of Programming Langugaes (POPL)
–  Object Oriented Programming Systems, Languages & Applications

(OOPSLA)
–  International Conference on Functional Programming (ICFP)
–  European Symposium on Programming (ESOP)
–  …

•  Technologies / Open Source Projects
–  Yacc, lex, bison, flex, …
–  LLVM – low level virtual machine
–  Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR)
–  Languages: OCaml, F#, Haskell, Scala, Go, Rust, …?

CIS 341: Compilers 51

Where else is this stuff applicable?
•  General programming

–  In C/C++, better understanding of how the compiler works can help you
generate better code.

–  Ability to read assembly output from compiler
–  Experience with functional programming can give you different ways to

think about how to solve a problem

•  Writing domain specific languages
–  lex/yacc very useful for little utilities
–  understanding abstract syntax and interpretation

•  Understanding hardware/software interface
–  Different devices have different instruction sets, programming models

CIS 341: Compilers 52

Thanks!
•  To the TAs: Dmitri, Richard, J.J. and Vivek

–  for doing an amazing job putting together the projects for the course.

•  To you for taking the class!

•  How can I improve the course?
–  Feedback survey posted to Piazza (soon!)

CIS 341: Compilers 53

