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1. Inference Rules, Types, and Subtyping (21 points total)
The following questions refer the inference rules given in Appendix A.

a. (3 points) According to the rules, which of the following types are subtypes of bool→ bool?
� ⊥
� bool→ bool

2 ⊥ → bool

� bool→ ⊥
2 ⊥ → ⊥

b. (3 points) According to the rules, which of the following types are supertypes of bool→ bool?
2 ⊥
� bool→ bool

� ⊥ → bool

2 bool→ ⊥
2 ⊥ → ⊥

c. (3 points) The term λ(x :⊥). λ(x : bool). x is not well typed in the empty typing context. In
which inference rule would type checking fail? (Choose one)

2 [var ] 2 [true] 2 [false] � [lam] 2 [app]

d. (3 points) The term λ(x : bool → bool). (z x) is not well typed in the empty typing context.
In which inference rule would type checking fail? (Choose one)

� [var ] 2 [true] 2 [false] 2 [lam] 2 [app]

e. (9 points) The term λ(x : ⊥). (x x) is well typed. Demonstrate that fact by completing the
following derivation tree. Label the use of each instance of an inference rule with its name (in brackets),
and fill in the missing types in the remaining boxes.

x :⊥ ∈ x :⊥
x :⊥ ` x : ⊥ [var ] x :⊥ ∈ x :⊥

x :⊥ ` x : ⊥ [var ] ` ⊥ <: ⊥ → ⊥ [bot ]

x :⊥ ` x x : ⊥ [app]

· ` λ(x :⊥). (x x) : ⊥ → ⊥ [lam]
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2. Compilation (25 points total)
Some languages (like C) have break and continue statements. break causes control to jump out of
the most closely syntactically enclosing loop, whereas continue jumps immediately to the start of the
most closely enclosing loop. Both constructs must only be used inside some loop. In this question we
will examine how to implement break and continue in OAT (only for while loops, we’ll ignore for

loops for simplicity).
The following OAT code demonstrates both break and continue. This program will exit the loop

when x reaches the value 4 and it will never print anything:

int foo() {

var x = 1;

while (true) {

if (x > 3) {

break;

} else {

x = x + 1;

continue;

print_string("Will never print");

}

print_string("Will also never print");

}

return x;

}

a. (4 points) Appendix B contains the LL code that we would expect to obtain by compiling the OAT
program listed above using a very simple modification to the exiting OAT compiler that we explore next.
The unconditional jump (br) instructions that correspond to the uses of break and continue have been
left out, but they are marked with LOCATION flags. To which label should each branch to?

LOCATION 1 should branch to label _post3

LOCATION 2 should branch to label _cond5
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b. (12 points) Appendix C contains an excerpt of the existing parts of the OAT frontend that will need
to be modified to implement break and continue. We also extend the OAT abstract syntax as shown
to include the new statement forms. One first cut at implementing break and continue is to make just
a few minor changes to the existing compiler, which will generate the code from Appendix B. (We will
explore improvements on the next page.)

Fill in the blanks below so that the resulting compiler supports break and continue. We have
allowed for you to add additional arguments to either or both of cmp_stmt and cmp_block (and we’ll
assume that calls to these functions that aren’t shown below have been adjusted accordingly):
let rec cmp_stmt (tc : TypeCtxt.t) (c:Ctxt.t) (rt:Ll.ty) (stmt:Ast.stmt node)

(lexit:Ll.lbl option) (lcond:Ll.lbl option)

: Ctxt.t * stream =

match stmt.elt with

| Ast.Break -> (match lexit with | None -> failwith "err"

| Some l -> T (Br l))

| Ast.Continue -> (match lcond with | None -> failwith "err"

| Some l -> T (Br l))

| Ast.While (guard, body) ->

let guard_ty, guard_op, guard_code = cmp_exp tc c guard in

let lcond, lbody, lpost = gensym "cond", gensym "body", gensym "post" in

let body_code = cmp_block tc c rt body (Some lpost) (Some lcond) in

c, []

>:: T (Br lcond)

>:: L lcond >@ guard_code >:: T (Cbr (guard_op, lbody, lpost))

>:: L lbody >@ body_code >:: T (Br lcond)

>:: L lpost

| ... (* other cases omitted *)

and cmp_block (tc : TypeCtxt.t) (c:Ctxt.t) (rt:Ll.ty) (stmts:Ast.block)

(lexit:Ll.lbl option) (lcond:Ll.lbl option)

: stream =

snd @@ List.fold_left (fun (c, code) s ->

let c, stmt_code = cmp_stmt tc c rt s lexit lcond in

c, code >@ stmt_code

) (c,[]) stmts

If you modified the function arguments to cmp_body, specify how it would be invoked “at the top
level” (i.e. when compiling a function body, which is by definition not in any while loop):
...

let block_code = cmp_block tc c ll_rty body None None in

...
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c. There are two related issues with adding break and continue as sketched above. One issue is that
the generated instruction stream may not be well-formed: it can contain two block terminators in a row,
as illustrated by lines 12 and 13 of the code in Appendix B and labels can be interspersed with other
code without proper block label entry point. Another issue is that both of these new statements might
create a lot of unreachable code, as illustrated by lines 19 – 21.

i. (3 points) After filling in the missing LOCATION instructions to implement break and continue,
there will more dead code in the Appendix B example besides that mentioned above. Where is it? (Give
your answer as a range of line numbers x–y:)

22–25

ii. (6 points) Briefly (!) describe how you would modify the OAT frontend to deal with these issues.
Possibile parts of a good answer include the following points:

• Change the body of cmp_block to not use List.fold_left and to instead stop iterating when it
encounters a break or continue. This will eliminate a lot of the dead code, but not the “double
label” or the “dead merge block” problem.

• Change the stream to blocks algorithm to drop a partially defined block. That is, when converting
the stream to a CFG, if a terminator is encountered before one is expected, rather than raising an
exception, instead it can simply drop the block being generated and start a new block. This will
handle the “double label” and much of the dead code, but not the “dead merge block” problem.

• Run a reachability dataflow analysis to identify blocks whose labels are never used and drop those
blocks from the CFG. This will deal with the “dead merge block” problem, but not the other two
issues.
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3. Data-flow Analysis (30 points total)
A major convenience in modern programming languages is automatic memory management. In lan-
guages like OCaml, tuples and records are just values that appear in expressions, and it is up to the
compiler to allocate these objects in memory appropriately. In languages like Java and OAT, the pro-
grammer has to be more explicit in allocating objects through the new keyword, but does not have to
think about freeing or deallocating them.

An object allocated on the heap is a set of locations in the heap that holds the object’s contents. To
free an object is to mark its locations as being available, so that subsequent allocations (through new)
can use them.

The OAT compiler currently compiles the allocation of OAT objects, i.e. involving the new keyword,
to an external function call to oat_malloc that handles the actual allocation on the heap. But objects
are actually never freed, so long-running OAT programs that create new objects will eventually crash!

A full solution involves linking a runtime garbage collector to compiled programs. But one way
to partially alleviate this problem is for the compiler to distinguish between objects that are “freeable”
versus those that “may escape” when the function returns. Intuitively, an object within a function does
not escape (i.e. is freeable) if no part of it can be accessed from any other function, whether directly
through a pointer or indirectly by following other pointers, once the function returns. Freeable objects
can be deallocated before the function exits.

More specifically, we say that a pointer %ptr (to an allocated object) is freeable at the exit of a
function @f if:

• No part of the object is accessible by following pointers from any arguments.

• No part of it is accessible from any returned value.

• No pointer to it (or a subcomponent) is ever assigned to a global.

• No pointer to it (or a subcomponent) is ever passed to another function via a call.

These conditions are sufficient to ensure that no other function can access any part of the object, so
it is safe to free it upon function exit. In this problem, we will define a dataflow analysis that identifies
freeable pointers in an LL program.

We will define the analysis in two steps. First, we define an “accessibility” relation, which approxi-
mates the set of pointers that are accessible from a given starting pointer. Then we will use the notion of
accessibility to define freeability, following the rules above.

Note: For simplicity, assume for the rest of this question pertains to a variant of the LL language that
does not support global definitions.

(There are no questions on this page.)
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a. (5 points) First, we look at some example programs to determine what the final behavior of the
analysis should be. For each of the following programs, check the box to indicate whether %ptr1 is
freeable (according to the explanation above).

i. define void @ptr_example1(i64 %arg) {

%ptr1 = call i64* @oat_malloc(i64 1)

store i64 %arg, i64* %ptr1

ret void

}

� %ptr1 is freeable
2 %ptr1 is not freeable

ii. define void @ptr_example2(i64** %arg) {

%ptr1 = call i64* @oat_malloc(i64 1)

store i64* %ptr1, i64** %arg

ret void

}

2 %ptr1 is freeable
� %ptr1 is not freeable

iii. define i64* @ptr_example3() {

%ptr1 = call i64* @oat_malloc(i64 1)

ret i64* %ptr1

}

2 %ptr1 is freeable
� %ptr1 is not freeable

iv. define i64* @ptr_example4() {

%ptr1 = call i64* @oat_malloc(i64 1)

%x = alloca i64*

store i64* %ptr1, i64** %x

%copy = load i64*, i64** %x

ret i64* %copy

}

2 %ptr1 is freeable
� %ptr1 is not freeable

v. define i64* @ptr_example5(i64 %arg) {

%ptr1 = call i64* @oat_malloc(i64 1)

store i64 %arg, i64* %ptr1

%ptr2 = call i64* @oat_malloc(i64 1)

%tmp = load i64, i64* %ptr1

store i64 %tmp, i64* %ptr2

ret i64* %ptr2

}

� %ptr1 is freeable
2 %ptr1 is not freeable
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Next, we tackle the first part of the analysis—the accessibility relation. Intuitively, we are trying to
(conservatively) identify when it is possible to reach the memory location pointed to by a uid %u by
following pointers starting from %v. Let us write %v ; %u, when %u is accessible from %v in this sense.
(For your reference, Appendix E includes an example LLVM program plus its accessibility information.)

We can compute accessibility using an instantiation of the iterative dataflow analysis framework that
we used for HW6. The facts computed by our accessibility analysis are maps m that associate each uid
%v of the function with a set of uids that might be reachable (at that point in the control-flow graph) by
traversing pointers starting from %v. Because every uid is reachable from itself, we’ll assume that our
implementation of maps ensures that %v ∈m(%v) for every map m.

b. (4 points) The goal of the analysis is to compute a map, mA that soundly approximates the accessi-
bility relation. In this context, what does “soundly approximates” mean? Choose one and briefly explain
why:

� mA(%v) ⊇ {%u | %v; %u }

2 mA(%v) ⊆ {%u | %v; %u }
Why?
Answer: We plan to use the accessibility information to approximate when it is safe to free a pointer.

Therefore, to be conservative, we want to permit more things to be considered accessible than might
actually be possible. This means that we might not free some data that is not actually accessible, but we
will never free data that is accessible.

Recall that we need to specify the join t (or combine) operation and flow functions FI for these facts to
fully define the dataflow analysis.

c. (4 points) Which of the following should we use as the join function for two maps? Briefly explain
why.

2 (m1 tm2)(%v) = m1(%v) ∩m2(%v)

� (m1 tm2)(%v) = m1(%v) ∪m2(%v)

Why?
Answer: This analysis is computing accessibility information along any path through the control

flow graph, so we want to take the union of the possibilities—if an accessibility relation holds along one
possible path, we want to include it in the results.
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The flow function FI(m) depends on the instruction I . For most of the LL instructions, and all of the
block terminators, the flow function is just the identity FI(m) = m, because they don’t create new
aliasing of pointers. Setting aside call and store for now, the instructions I that manipulate pointers
(and so might affect the accessibility relation) are:

• %u = bitcast W* %w to T*

• %u = getelementptr U, U* %w, . . .

• %u = load T*, T** %w

All of these instructions introduce new accessibility relations because they make %u an alias for a pointer
accessible from %w. They have the same flow function FI(m) = m′, where m′ is defined in terms of m
and the uids %u and %w appearing in I as shown below:

m′(%v) =

{
m(%v) ∪m(%u) ∪m(%w) when %w ∈m(%v) or %u ∈m(%v)
m(%v) otherwise

Intuitively, this transfer function says that if %v ; %u or %v ; %w before I , then %v ; %x for any %x

reachable by either %u or %w after I .

d. (4 points) Fill in the blanks below to complete the transfer function FI(m) = m′ for the case where
I = store T* %u, %T** w. Your solution should be sound, but as precise as possible.

m′(%v) =

{
m(%v) ∪ m(%u) when %w ∈m(%v)
m(%v) otherwise

f. (4 points) Briefly explain what transfer function you would use for the instruction I =
%u = call T* (U1 arg1, ..., Un argN)

Answer: We want to say that, due to a function call, any of the pointers accessible by any of the
arguments might potentially become accessible to one another and the output %u, so we conservatively
merge all of the accessibility of all of those things together.

The mathematical answer is:

m′(%v) =

{
m(%v) ∪m(%u) ∪

(⋃
argjm(%argj)

)
when %argi ∈m(%v) for any %argi or %u ∈m(%v)

m(%v) otherwise
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Recall that this (forward) dataflow analysis associates facts with the outgoing CFG edges. After com-
pleting the accessibility analysis describe above, we can compute a final map mA that summarizes all of
the accessibility information of from the whole control-flow graph. Let rets be the set of ret instructions
in the CFG.

mA =
⊔

I∈rets

out [I]

g. (4 points) Why is the dataflow analysis described above guaranteed to terminate?
Answer: There are only finitely many uid identifiers in a program, so the number of possible maps

from uids to sets of uids is bounded (if there areN uids, then the number of possible lattices is something
like (2N)N ). At each stage of the analysis, the maps only get coarser (i.e. we always add some elements
to one of the sets and we never remove them), so we can do that only a finite number of times before the
algorithm will terminate.
Finally, we can complete the freeability analysis for the control flow graph for some function

define T @f(T1 %arg1, ... , TN %argN) { ... }

We first compute the accessibility mapmA for the CFG of f. We can then say that a pointer %ptr created
by a call to oat_malloc is freeable if, for all %w ∈ mA(%ptr), not(escapes(%w)). Here, the function
escapes(%w), which also uses mA, does a pass through the CFG for f and returns true if %w occurs in
any instruction I of the forms:

%v = call T g(. . .W* %w. . .) and similarly for void calls (i.e., %w appears as a function argument)
store W* w, W** u, where %u ∈ mA(%arg) for some %arg
ret W* w

Claim: if mA is a sound approximation to accessibility, then this freeability analysis will identify a
pointer as freeable only if it is safe to free.

(This problem continues on the next page.)
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h. (5 points) As we observed, this is a conservative analysis—even if you have “perfect” accessibility
information (so this question does not depend on how you answer parts d and f). Briefly describe (no
need to write the code, though code is fine too) how you could extend the code for the following LL
program such that %ptr1 would not be identified as freeable, yet it would nevertheless be memory safe
to call free(%ptr1) before returning from the function.

Answer: We are conservative about what happens when a function is called, so, even if the escaping
pointer is never actually used (in which case it would be safe to free it), our analysis will say that it cannot
be freed. The code below illustrates such a program, where @foo completely ignores its argument, so
%ptr1 could actually be freed at the end of @conservative.

define i64* @foo(i64* %ptr1) {

%new = call i64* @oat_malloc(i64 1)

ret i64* %new

}

define i64* @conservative(i64 %arg) {

%ptr1 = call i64* @oat_malloc(i64 1)

%ptr2 = call i64* @foo(i64* %ptr1)

ret i64* %ptr2

}
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4. Control-flow Analysis (16 points total)
The following questions concern the following control-flow graph, where the nodes numbered 1–6 rep-
resent basic blocks and the arrows denote control-flow edges.

1

2 3

4

5

6

a. (4 points) It is straightforward to create a LLVMLite program (i.e. a .ll file, as in our project
compiler) whose basic blocks form the graph shown above. Which of the following are true statements
about all such LL programs whose graphs have this shape? (Mark all true statements.)

2 The program has one conditional branch (cbr) instruction.
� The program has no return (ret) instructions.
2 The program has three call instructions.
� The program as a unique entry block.

b. (4 points) Draw the dominator tree for the control flow graph:
Solution:

1

2 3

4

5

6
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c. (4 points) Recall that a natural loop is a strongly-connected component with a unique entry node
(the header) that is the target of a back edge. Which of the following sets of nodes are natural loops of
this graph? For each set, fill in the blank with the number of its loop header, or write “NANL” for “not
a natural loop”.

{2, 4} NANL

{3, 4, 5} NANL

{5, 6} 5

{2, 3, 4, 5, 6} NANL

d. (4 points) There is no source OAT program that, when compiled, results in an LLVMLite program
whose control-flow graph has the depicted shape. Briefly explain why.

Answer: OAT programs have well-nested loops and conditionals and no “goto” or direct “jump”
operations. This means that it is not possible to write a program that jumps into the “then” or “else”
branch of a conditional from outside the conditional block itself. Therefore the back edges from 4 → 2
and 5→ 3 are not possible to express in a source OAT program.
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5. Object Compilation (15 points total)
These questions refer to the Java code given in Appendix D.

Pick a strategy for compiling Java’s multiple inheritance that is suitable for use with separate com-
pilation—so class C could be compiled without referring to class D. (Of course D will need to know
something about C, since D inherits from it.)

a. (3 points) Briefly (!) explain your compilation strategy.

Answer: There are several strategies. Here we will pick the common “use a level of indirection”
with an ITable that can be searched to find the functions. Dispatch via an interface searches the
ITable. Dispatch via a class uses the object’s usual dispatch vector, which can be arranged by
traversing the class tree to assign dispatch vector slots compatible with “width” subtyping. In this
strategy, the compiler assigns each method (non-overloaded) method a unique identifier. We’ll
write "foo’’, "bar", and "baz" for them.

b. (8 points) Draw a picture of the class tables, an instance of the object constructed by the statement
D d = new D();, and any other relevant dynamic state required by your implementation strategy.
(Omit any fields or methods contributed by Object.)

__foo_D:
  <code>

x

y

D object 

“D”

super

itable

foo

bar

baz

D Class Table 
d "foo"

“bar”

D's Interface Map 

__baz_D:
  <code>

“C”

super

itable

foo

bar

C Class Table 

__foo_C:
  <code>

__bar_C:
  <code>

"foo"

“bar”

C's Interface Map 
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c. (4 points) Suppose that a high-performance Java to native x86 compiler is claimed to support
dynamic dispatch via interfaces with the same performance as dispatch via a class. For example:
the method-dispatch overhead imposed by each of the two calls to foo in the following code would
have exactly the same run-time cost (of course the bodies of the two method calls might perform
differently):

static void callThem(I i, D d) {

i.foo(); // dispatch to foo via an interface

d.foo(); // dispatch fo foo via a class

}

Which of the following properties must this Java compiler have? (mark all that apply)

2 Both calls to foo in the above code are inlined into the code for callThem.

� The compiler uses whole-program compilation, and so has access to all of the classes that can
ever possibly be used.

2 The dynamic dispatch implementation uses an inline cache to accelerate the calls.

2 The compiler uses hashing to compute the layout of its dispatch vectors.
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6. Optimization Miscellany (13 points total)
a. (8 points) So-called “peephole” optimizations simplify code by looking at a short sequences of

instructions and replacing them equivalent but shorter code sequences. Each of the following at
the x86 snippet “templates” can be replaced by a shorter instruction sequence. Assuming that
LOC, LOC1, and LOC2 refer to register or memory operands (not immediate values), suggest an
equivalent one instruction replacement, or write “delete” if the snippet can be deleted without
affecting the program behavior. We have done the first one for you.

0. subq $8, %rsp pushq LOC

movq LOC, (%rsp)

1. addq $0, LOC delete

2. movq LOC1, LOC2 movq LOC1, LOC2

movq LOC2, LOC1

3. popq LOC movq (%rsp), LOC

pushq LOC

4. pushq LOC delete

popq LOC

b. (5 points) Briefly describe the purpose of tracking move-related edges when doing graph-coloring
based register allocation. Give an example of which LL IR instruction would most benefit from
this technique.

Answer: Move-related edges are a heuristic that can be used to improve register allocation. The
idea is to remember when one identifier is moved to another and, if possible, to assign them
the same color (i.e. the same register), which would mean that the move could be eliminated.
Move-related identifiers can be forced to use the same register by “coalescing” their nodes in the
interference graph.

The LLVM bitcast instruction compiles directly to a movq a the x86 level, so it would benefit
from this optimization. The call instruction needs to take into account the register conventions,
so it can also benefit. On x86, arithmetic instructions such as add can also benefit if one of the
argument UIDs is allocated to the same register as the destination UID.
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APPENDIX A: Subtyping Inference Rules
Consider a variant of the typed lambda calculus whose types τ and terms e are generated by the following
grammars:

τ ::= bool | ⊥ | τ1 → τ2

e ::= x | true | false | λ(x :τ). e | e1 e2
The subtyping relation for this language is given by the following collection of inference rules:

` τ1 <: τ2

` bool <: bool
[bool ] ` ⊥ <: τ

[bottom]
` τ3 <: τ1 τ2 <: τ4
` τ1 → τ2 <: τ3 → τ4

[fun]

The term type checking relation is given by the following collection of inference rules, where Γ is
the typing context that associates variables with their types. Recall that we write x : τ ∈ Γ to mean that
Γ maps x to type τ and we write x 6∈ Γ to mean that x is not associated with any type in Γ. The empty
context is written as “·”.

Γ ` e : τ

x :τ ∈ Γ
Γ ` x : τ

[var ]
Γ ` true : bool

[true]
Γ ` false : bool

[false]

x 6∈ Γ x :τ1,Γ ` e2 : τ2
Γ ` λ(x :τ1). e2 : τ1 → τ2

[lam]
Γ ` e1 : τ1 Γ ` e2 : τ2 ` τ1 <: τ2 → τ

Γ ` e1 e2 : τ
[app]
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APPENDIX B: LLVM Code for Break and Continue

1 define i64 @foo() {

2 %_x1 = alloca i64

3 store i64 1, i64* %_x1

4 br label %_cond5

5 _cond5:

6 br i1 1, label %_body4, label %_post3

7 _body4:

8 %_x6 = load i64, i64* %_x1

9 %_bop7 = icmp sgt i64 %_x6, 3

10 br i1 %_bop7, label %_then18, label %_else17

11 _then18:

12 ;; <----------------- LOCATION 1

13 br label %_merge16

14 _else17:

15 %_x9 = load i64, i64* %_x1

16 %_bop10 = add i64 %_x9, 1

17 store i64 %_bop10, i64* %_x1

18 ;; <----------------- LOCATION 2

19 %_str14 = getelementptr [17 x i8], [17 x i8]* @_str_arr13, i32 0, i32 0

20 call void @print_string(i8* %_str14)

21 br label %_merge16

22 _merge16:

23 %_str20 = getelementptr [22 x i8], [22 x i8]* @_str_arr19, i32 0, i32 0

24 call void @print_string(i8* %_str20)

25 br label %_cond5

26 _post3:

27 %_x22 = load i64, i64* %_x1

28 ret i64 %_x22

29 }
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APPENDIX C: OAT Compiler Code (excerpt)

Existing Frontend Code

(* Compile a statement *)

let rec cmp_stmt (tc : TypeCtxt.t) (c:Ctxt.t) (rt:Ll.ty) (stmt:Ast.stmt node)

: Ctxt.t * stream =

match stmt.elt with

| Ast.While (guard, body) ->

let guard_ty, guard_op, guard_code = cmp_exp tc c guard in

let lcond, lbody, lpost = gensym "cond", gensym "body", gensym "post" in

let body_code = cmp_block tc c rt body in

c, []

>:: T (Br lcond)

>:: L lcond >@ guard_code >:: T (Cbr (guard_op, lbody, lpost))

>:: L lbody >@ body_code >:: T (Br lcond)

>:: L lpost

| ... (* other cases omitted *)

(* Compile a series of statements *)

and cmp_block (tc : TypeCtxt.t) (c:Ctxt.t) (rt:Ll.ty) (stmts:Ast.block) : stream =

snd @@ List.fold_left (fun (c, code) s ->

let c, stmt_code = cmp_stmt tc c rt s in

c, code >@ stmt_code

) (c,[]) stmts

Extensions to the AST

type stmt =

...

| Break

| Continue

| While of exp node * stmt node list
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APPENDIX D: Example Java Code

interface I { public void foo(); }

interface J { public void bar(); public void foo(); }

class C implements I, J {

public int x;

public void foo() { System.out.println("foo"); }

public void bar() { System.out.println("bar"); }

}

class D extends C {

private int y;

private void baz() { System.out.println("baz"); }

@Override

public void foo() { System.out.println("D’s foo"); }

}
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APPENDIX E: Example of accessibility analysis
This code shows the accessibility information for an example LLVM program. The comments after each
statement summarize the accessibility facts at that point in the program. For example, the comment on
line 15 says that %node_ptr; %node_ptr and %node_ptr; %ptr1 and %node_ptr; %next_ptr.

1 %Node = type { i64, %Node* } ; struct Node { int element; Node? next }

2
3 define i64* @ptr_example6(%Node* %arg) {

4 ; %arg -> {%arg}

5 %ptr1 = call i64* @oat_malloc(i64 16)

6 ; %arg -> {%arg},

7 ; %ptr1 -> {%ptr1}

8 %node_ptr = bitcast i64* %ptr1 to %Node*

9 ; %arg -> {%arg},

10 ; %ptr1 -> {%ptr1, %node_ptr},

11 ; %node_ptr -> {%node_ptr, %ptr1}

12 %next_ptr = getelementptr %Node, %Node* %node_ptr, i32 0, i32 1

13 ; %arg -> {%arg},

14 ; %ptr1 -> {%ptr1, %node_ptr, %next_ptr},

15 ; %node_ptr -> {%node_ptr, %ptr1, %next_ptr}

16 ; %next_ptr -> {%next_ptr, %node_ptr, %ptr1}

17 store %Node* %arg, %Node** %next_ptr

18 ; %arg -> {%arg},

19 ; %ptr1 -> {%ptr1, %node_ptr, %next_ptr, %arg},

20 ; %node_ptr -> {%node_ptr, %ptr1, %next_ptr, %arg}

21 ; %next_ptr -> {%next_ptr, %node_ptr, %ptr1, %arg}

22 %next_ptr_of_arg = getelementptr %Node, %Node* %arg, i32 0, i32 1

23 ; %arg -> {%arg, %next_ptr_of_arg},

24 ; %ptr1 -> {%ptr1, %node_ptr, %next_ptr, %arg, %next_ptr_of_arg},

25 ; %node_ptr -> {%node_ptr, %ptr1, %next_ptr, %arg, %next_ptr_of_arg}

26 ; %next_ptr -> {%next_ptr, %node_ptr, %ptr1, %arg, %next_ptr_of_arg}

27 ; %next_ptr_of_arg -> {%arg, %next_ptr_of_arg}

28 ret i64* %ptr1

29 }
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