
CIS 341 Final Examination
May 2020

SOLUTIONS

1

1. Compilation (20 points total)
a. (15 points) Suppose we wanted to add a new “repeat–until” loop construct to the Oat language
compiler you implemented for the class project. The new syntax is given by extending the Oat grammer
as shown below:

stmt ::= . . .
| repeat block until(exp)

Semantically this construct behaves like a while loop, except that the body block is guaranteed to exe-
cute at least once; the loop repeats whenever exp evaluates to false and terminates otherwise. Variables
declared in block are not in scope inside of exp.

For each compiler stage below, indicate whether you would need to modify that stage to implement
repeat–until. If a stage needs to be changed, briefly say how (no need to fill the boxes!). Aim for
changing the fewest stages of the existing Oat compiler (as found in homework 5 and 6).

Lexer:
2 no change needed
� changes needed:
Add the repeat and until tokens to the list of keywords.

Parser:
2 no change needed
� changes needed:
(OPTIMAL): Extend the grammar to recognize the production above. modify the stmt production

to return a list of statements and block to “flatten” this list. Desugar repeat block until(exp) into
block;while(!(exp))block . (SUBOPTIMAL): Add a new kind of repeat-until Ast stmt node, parse the
production above into that statement.

Typechecker:
� no change needed
2 changes needed:
(SUBOPTIMAL): Extend the typechecker to check that “body” is well formed and “exp” is a boolean

expression

(continued)

PennKey: 2

Frontend:
� no change needed
2 changes needed:
(SUBOPTIMAL): modify the translation to emit basic blocks similar to while, either by “desugaring to
while” here, or by handling the logic explicitly.

Backend:
� no change needed
2 changes needed:

b. (5 points) Briefly explain one reason why you might choose a strategy for implementing repeat–
until that requires changes to more compiler stages (or more extensive changes to those stages) than
strictly necessary to provide the functionality. (No need to fill the box! A short sentence or two is
enough.)

There are several good answers: (1) to improve error messages for the programmer (not easy if desug-
aring happens in the parser, (2) to generate smaller code (naive translation to while duplicates the body),
(3) to make the compiler itself more maintanable

PennKey: 3

2. Inference Rules and Type Checking (30 points total)
The following questions refer the inference rules given in Appendix A. The language shown in Ap-
pendix A supports generic types (also known as polymorphism). Appendix B includes OCaml code that
implements (most of) this type system.1 Unlike OCaml (but a bit like Java), this language requires the
programmer to explicitly bind and instantiate generic types. For example, the generic identity function
id would be defined as <α>λ(x :α).x and it has the generic type <α>(α→ α). Here, α is a type variable
(usually written as ’a in OCaml) that stands in for a type, the angle brackets indicate the presence of
such a type parameter. To use a generic function like id, the programmer must explicitly instantiate the
type parameter. For example: id <bool> true is a well-formed program.

There are two kinds of judgments: ∆ ` τ ok says that the type τ is well-scoped and has free type
variable in ∆. The judgment ∆; Γ ` e : τ asserts that the program e is well-formed and of type τ in
the contexts ∆ and Γ. The new rules for typechecking programs, compared to the simply typed lambda
calculus, are [generalize], which introduces a generic program that can mention a fresh type variable,
and [instantiate] which can be used to replace a generic type variable with a specific type instance. The
[instantiate] rule uses type substitution, defined below the inference rules.

a. (3 points)
� True or 2 False:
There is a derivation of the following judgment according to the inference rules:

β ` <α>(α→ β) ok

b. (3 points)
2 True or � False:
There is a derivation of the following judgment according to the inference rules:

· ` <α><α>(α→ α) ok

c. (5 points) According to this type system, what type can be filled in for ‘?’ in the judgment below to
obtain a well-typed program? (Choose one.)

·; · ` <α>λ(x :α). <β>λ(y :β). x : ?

2 <α><β>α→ β → α

2 <α><β>α→ β → β

� <α>α→ <β>β → α

2 <α>α→ <β>β → β

2 This term is ill-typed.

1NOTE: One way to answer the questions in this problem is to complete the implementation (see part f.) and run the code
on appropriate test cases. However, these questions should be answerable without resorting to doing that. Should you want
it, the code of Appendix B is available in the supplementary file tcpoly.ml available on the course web page and Piazza.

PennKey: 4

d. (5 points) According to this type system, what type can be filled in for ‘?’ in the judgment below
to obtain a well-typed program? (Choose one.)

·; · ` λ(f :<α> α→ bool). (f <bool> true) : ?

� (<α>α→ bool)→ bool

2 <α>(α→ bool→ bool)

2 (<α>α→ bool)→ α

2 <α>(α→ bool→ α)

2 This term is ill-typed.

e. (4 points) Polymorphism is a strong property. One could rigorously prove (although we won’t get
that detailed here) that there is no closed program e such that the following judgment is provable.

·; · ` e : <α>(bool→ α)

Briefly give an explanation as to why there can be no such e. (Hint: think about what it would take to be
able to implement such a generic function.)

Since we can instantiate αwith any type, such a function would be a generic algorithm that can construct
a value of any type at all, given just a boolean as input. As an even more extreme case, the generic type
<α>α could be instantiated to any type too and it would have to create a value of that type using no
inputs!

f. (10 points) Appendix B contains OCaml code for (most of) an implementation of the type checking
algorithm described by the rules in Appendix A. (This code is an adaptation of the lambda calculus code
from lecture, and is also similar to the typechecker you implemented for HW5.) The typecheck function
is missing the cases for the new expressions. Fill in the blanks below to complete their implementations.
If you need to raise an error, use failwith and give a (somewhat) descriptive message. (The code in
each case is at most a few lines long.)

let rec typecheck (delta:typ_environment) (gamma:environment) (e:exp) : tp =

begin match e with

(* other cases from Appendix B *)

| Gen(alpha, e1) ->

if contains alpha delta then failwith "type variable aliased"

else GenT(alpha, typecheck (alpha::delta) gamma e1)

| Ins(e1, t) ->

let _ = wft delta t in

begin match (typecheck delta gamma e1) with

| GenT(alpha, t1) -> tsubst t1 t alpha

| _ -> failwith "tried to instantiate non-generic type"

end

PennKey: 5

3. Dataflow Analysis (36 points total)
Dataflow analysis is most often used by compilers for discovering facts that enable optimization, but
it has broad applicability. In this problem we consider how dataflow analysis can be adapted to help
improve software security by identifying data values that might become “tainted” by untrustworthy
sources. Such an analysis might help discover security flaws in which input is inappropriately used—
for instance if the user-supplied data is interpreted as part of an SQL query string or as part of a shell
command, maliciously constructed inputs could release or corrupt database information, delete files, or
worse.

We will develop (a simplified version of) this analysis in the context of the LLVM IR you are familiar
with from class (ignoring getelementptr for simplicity).

a. (6 points) The first step is to construct a lattice of dataflow facts. For simplicity, our analysis will
track, for each UID of the program, a taint level draw from the set Level = {T, U}, where T stands for
“may be tainted” and U for “definitely untainted”. We order them as T v U . Note that T u U = T .

An element of our dataflow lattice is a (finite) map m : UID → Level . Let us write {%x 7→ U, %y 7→
T} for the map that sends UID %x to label U and %y to the label T (and we’ll use similar notations
that let us treat maps as sets of key–value bindings). We’ll use the notation m1(%u) to lookup the label
associated with %u in m1. Maps are ordered pointwise, and we write m1 v m2 to mean that map m1 is
less-than-or-equal-to map m2 (overloading the v symbol).

Suppose m = {%x 7→ U, %y 7→ T}. Which of the following relations hold? (Mark all that apply.)

� {%x 7→ U, %y 7→ T} v m

2 {%x 7→ U, %y 7→ U} v m

2 {%x 7→ T, %y 7→ U} v m

� {%x 7→ T, %y 7→ T} v m

2 {%y 7→ U} v m

� {%y 7→ T} v m

b. (2 points) The “meet” of two lattice elements, written m1 um2, is defined as the map such that for
all UIDs %u, (m1 um2)(%u) = m1(%u) um2(%u). For distinct UIDs %x and %y we also want:

{%x 7→ `1} u {%y 7→ `2} = {%x 7→ `1, %y 7→ `2}

With these definitions, we can consider UID’s not appearing in a map m to have which label? That is,
for any %u 6∈ dom(m), it is as though m(%u) = X . What is X?

2 X is T

� X is U

PennKey: 6

Given the setup above, we extend our lattice elements (label maps) m so that literals appearing in
the program are considered to be untainted, so we have, for example, m(3) = U (and similarly for all
other i64 literals). This means that for an LLVM IR operand op, which is either a UID or a literal, we
can write m(op) for its taint level.

Next we must consider the flow functions Fn for each instruction n of the LLVM IR. The idea here is
that a computation that uses (possibly) tainted inputs produces a (possibly) tainted output — to be sound
our flow functions should be conservative approximations. Some instructions’ flow functions are easy
to describe. For example, the bitcast instruction (shown in the table below) simply extends the map m
to include the newly defined UID %ans with the same taint level as the incoming %ptr argument.

instruction n Fn(m) =

%ans = bitcast ty1* %ptr to ty2* m u {%ans 7→ m(%ptr)}
For arithmetic operations, we want to conservatively propagate taint: if either input is tainted, so is

the result. Below we define the flow function for add; the other arithmetic operations (sub, mul, etc.)
and imcp use the same flow function.

instruction n Fn(m) =

%ans = add i64 op1, op2 ?

c. (3 points) What map should we fill in for the ? in the table above? (Choose one.)

2 {%op1 7→ m(%op2)}

2 {%ans 7→ m(%op1) um(%op2)}

2 {%op1 7→ m(%ans) um(%op2))}

2 m u {%op1 7→ m(%op2)}

� m u {%ans 7→ m(%op1) um(%op2)}

2 m u {%op1 7→ m(%ans) um(%op2))}

Because the alloca instruction has no input operands its flow-function is straightforward, and there are
two possible sound answers:

instruction n Fn(m) =

%ans = alloca typ m u {%ans 7→ T} or m u {%ans 7→ U}

d. (2 points) Which one is more precise?

2 Fn(m) = m u {%ans 7→ T} is more precise.

� Fn(m) = m u {%ans 7→ U} is more precise.

PennKey: 7

Defining the flow functions for call instructions is more challenging. In general, whether or not the
result of a call to a function f(arg1, ..., argN) is tainted depends on how the code in f uses its
arguments (and whether they are tainted) and also on whether f gets tainted data from elsewhere (perhaps
by calling some other function or by accessing a tainted global). Here we simplify considerably and
define the flow functions for call as shown below, with the functions tainted_input and sanitize

being treated specially:

instruction n Fn(m) =

%ans = call i64 tainted_input() m u {%ans 7→ T}

%ans = call i64 sanitize(i64 op) m u {%ans 7→ U}

%ans = call ty f(op_1, ..., op_n) m u {%ans 7→
d

im(op_i)}

e. (8 points) Which of the following statements characterize the assumptions we are making by using
the definition above? (Mark all that apply.)

� The (known) function i64 tainted_input() takes no arguments and produces a tainted i64

value (modeling “untrusted user input”).

� The (known) function i64 sanitize(i64 op) returns an untainted result no matter what its
input is (modeling “validation of user input”).

� For (unknown) function f, we assume that f produces a tainted result only if at least one of its
inputs are tainted.

2 For (unknown) function f, we assume that f produces a tainted result only if all of its inputs are
tainted.

PennKey: 8

Tracking taint through the LLVM IR load and store instructions is also a bit subtle. A first, unsound
attempt at defining flow functions for load and store is shown below:

instruction n Fn(m) =

%ans = load ty* op m u {%ans 7→ m(op)}

store ty op, ty* %ptr m u {%ptr 7→ m(op)}

f. (5 points) Briefly explain why the definition is unsound.

Pointers can be aliased, but updating taint associated with %ptr in the store instruction doesn’t update
any of its aliases, so one could write “tainted” information through one pointer and read “untainted” data
from an alias.

One option to fix the unsoundness would be to change the flow function for load as shown below so that
we conservatively assume that any value loaded from memory might be tainted. This isn’t great because
everything read from memory would be considered to be tainted, leading to lots of “false positives.”

instruction n Fn(m) =

%ans = load ty* op m u {%ans 7→ T}
A more precise option is to instead change the flow function for store by making use of the results of a
different dataflow analysis.

g. (2 points) What other analysis would you use to improve the precision of the flow function for
store?

alias analysis

h. (3 points) Briefly explain how the flow function for store can exploit that analysis:

Use the results of alias analysis to modify the store flow function to update the taint levels of all
possible aliases of %ptr. Technically, we have Fn(m) = m u {%a 7→ m(op) | %a ∈ mayalias(%ptr)}
load can use the flow-function given above part f.

PennKey: 9

To complete the story, we observe that the flow functions for block terminators simply propagate
the current taint map: Fn(m) = m when n is a block terminator. With that, we can plug our taint-
tracking fact lattice into the general dataflow fixpoint solver (as we used for HW6) in forward mode.
The resulting analysis will compute taint maps for each edge of the control flow graph.

Consider the following LLVM IR program that loops a variable number of times, accumulating an
answer into the (location) pointed to by %acc.

define i64 @example(i64 %n) {

%ctr = alloca i64

%acc = alloca i64

store i64 %n, i64* %ctr

store i64 1, i64* %acc

br label %start

;; ** HERE **

start:

%2 = load i64, i64* %ctr

%3 = icmp sgt i64 %2, 0

br i1 %3, label %then, label %end

then:

%4 = load i64, i64* %acc

%5 = call i64 tainted_input()

%6 = add i64 %4, %5

store i64 %6, i64* %acc

%7 = load i64, i64* %ctr

%8 = sub i64 %7, 1

store i64 %8, i64* %ctr

br label %start

end:

%9 = load i64, i64* %acc

ret i64 %9

}

i. (5 points) Let the map m be the fixpoint solution computed for the in-edge of the start block,
marked as ** HERE ** above. For each UID u below, what is the taint value m(u)? 2

m(%ctr) = � U 2 T
m(%acc) = 2 U � T
m(%2) = � U 2 T
m(%3) = � U 2 T
m(%4) = 2 U � T

m(%5) = 2 U � T
m(%6) = 2 U � T
m(%7) = � U 2 T
m(%8) = � U 2 T
m(%9) = � U 2 T

2Technically, the answer to this question would depend on how you implement the flow functions for load and store as
in part h.. Here assume that they are (magically) defined as precisely as possible.

PennKey: 10

4. Control-flow Analysis (16 points total)
The following questions concern the following control-flow graph, where the nodes numbered 1–6 rep-
resent basic blocks and the arrows denote control-flow edges. The entry point is node 1.

1

2 3

4 5

6

a. (6 points) “Draw” the dominator tree by putting an “X” in each box where there is an immediate
dominator edge from a source node to a target node. (There are no “self edges” so we leave those blanks
empty.)

tgt: 1 2 3 4 5 6
src:

1 � � 2 � �
2 2 2 � 2 2

3 2 2 2 2 2

4 2 2 2 2 2

5 2 2 2 2 2

6 2 2 2 2 2

Solution Picture:

1

2 3

4 5

6

b. (3 points) Which of following nodes are in the dominance frontier for node 2?

2 1 � 2 2 3 2 4 � 5 2 6

c. (3 points) Which of following nodes are in the dominance frontier for node 3?

2 1 2 2 2 3 2 4 � 5 � 6

d. (4 points) Could this control flow graph be generated by compiling a well-formed Oat program
using the HW06 frontend? Briefly explain.

� No 2 Yes
This control flow graph cannot be generated by compiling a well-formed Oat program using the HW06

frontend because the only looping constructed in Oat is “while” but it compiles to a set of blocks inde-
pendently of the “if” statement, so you can’t have either conditional branch targeting a non-entry node
of a while loop.

PennKey: 11

5. LLVM IR and Optimization Miscellany (18 points total)
a. (6 points) Consider the LLVM IR’s phi instruction, shown below, and assume that it appears as
part of some block of code in a well-formed control-flow graph.

%ans = phi i64 [%y, %block1], [%ans, %block2]

Which of the following statements must be true of this LLVM IR program?

� The block containing the instruction above has exactly two predecessor blocks named %block1 and
%block2 in the control-flow graph.

2 The block containing the instruction above has exactly two successor blocks named %block1 and
%block2 in the control-flow graph.

2 The block containing the instruction above must itself be named %block1

2 The block containing the instruction above must itself be named %block2.

2 The control-flow graph contains a back edge whose source is the block labeled by %block1

� The control-flow graph contains a back edge whose source is the block labeled by %block2

b. (6 points) Briefly explain one reason why optimizing a program by unrolling loops is not always
guaranteed to improve performance, even though doing so cuts down the total number of conditional
branches executed by the code.

(1) The resulting loop body code might exceed the processor’s instruction cache, which means that
it might need to do many more memory accesses to run the instructions. (2) The processor’s branch
prediction might effectively achieve the same behavior as loop unrolling anyway, so the performance
may not improve.

c. (6 points) Briefly explain why, when using Kempe’s graph-coloring algorithm for register alloca-
tion, it is useful to mark a node a “possibly spilled” when simplifying the graph, but defer the decision
to actually spill it until the coloring phase.

Even though the node is marked as spilled, there might be a color available for it during the coloring
phase. If there is one available, the coloring is still guaranteed to succeed, but there will be fewer stack
accesses, so the performance will almost certainly improve.

PennKey: 12

CIS341 Final Exam 2020 Appendices

PennKey: 13

APPENDIX A: Polymorphism Inference Rules
Consider a variant of the typed lambda calculus whose types τ and terms e are generated by the following
grammars (we also use parentheses when writing terms to disambiguate their parses):

τ ::= bool | τ1 → τ2 | <α> τ | α

e ::= x | true | false | λ(x :τ). e | e1 e2 | <α> e | e <τ>
The term type checking relation is given by the following collection of inference rules, where ∆ is

the set of type variables (written α, β, etc.) that are in scope, and Γ is the typing context that associates
variables with their types. Recall that we write x : τ ∈ Γ to mean that Γ maps x to type τ and we write
x 6∈ Γ to mean that x is not associated with any type in Γ. An empty context is written as “·”.

∆ ` τ ok

∆ ` bool ok [TBool]
∆ ` τ1 ok ∆ ` τ2 ok

∆ ` τ1 → τ2 ok
[TArr]

α /∈ ∆ ∆, α ` τ ok
∆ ` <α> τ ok [TGeneric] α ∈ ∆

∆ ` α ok
[TVar]

∆; Γ ` e : τ

x :τ ∈ Γ
∆; Γ ` x : τ

[var]
∆; Γ ` true : bool

[true]
∆; Γ ` false : bool

[false]

x 6∈ Γ ∆ ` τ1 ok x :τ1,∆; Γ ` e2 : τ2
∆; Γ ` λ(x :τ1). e2 : τ1 → τ2

[lam]

∆; Γ ` e1 : τ2 → τ ∆; Γ ` e2 : τ2
∆; Γ ` e1 e2 : τ

[app]

α /∈ ∆ ∆, α; Γ ` e : τ

∆; Γ ` <α> e : <α> τ
[generalize]

∆; Γ ` e : <α> τ1 ∆ ` τ ok
∆; Γ ` e <τ> : τ1{τ/α}

[instantiate]

The type substitution operation τ1{τ/α} replaces free occurrences of α by τ in the type τ1 and it is
defined recursively on the structure of τ1:

bool{τ/α} = bool (τ1 → τ2){τ/α} = τ1{τ/α} → τ2{τ/α}

(<β> τ1){τ/α} =

{
<β> τ1 if α = β
<β> (τ1{τ/α}) if α 6= β

β{τ/α} =

{
τ if α = β
β if α 6= β

PennKey: 14

APPENDIX B: Typechecking Code
Note: For your reference the code in this appendix is also available for download as the supplementary
file tcpoly.ml available on the course web site and linked to on Piazza.
module Fun = struct

type tvar = string (* type variables , "alpha" "beta" etc. *)

type var = string (* term variables , "x", "y", "f", etc. *)

(* types *)

type tp =

| BoolT (* the type of booleans *)

| FunT of tp * tp (* ty1 -> ty2 the type of functions *)

| VarT of tvar (* type variables "alpha", "beta", "gamma" *)

| GenT of tvar * tp (* generic type: <a>t *)

(* Abstract syntax of "polymorphic lambda terms" *)

type exp =

| Lit of bool

| Var of var (* local variables *)

| Fun of var * tp * exp (* functions: fun (x:t) -> e *)

| App of exp * exp (* function application *)

| Gen of tvar * exp (* generic type parameter *)

| Ins of exp * tp (* type instantiation *)

end

(* This module implements a simple type checker for the polymorphic language *)

module TC = struct

open Fun

type typ_environment = tvar list

type environment = (var * tp) list

let contains (alpha:tvar) (delta:typ_environment) = List.mem alpha delta

let lookup x (gamma:environment) = List.assoc x gamma

(* Well -formed types: returns unit if delta |- t ok and fails otherwise *)

let rec wft (delta:typ_environment) (t:tp) : unit =

begin match t with

| BoolT -> ()

| FunT(t1 , t2)-> wft delta t1 ; wft delta t2

| VarT alpha ->

if contains alpha delta then ()

else failwith "type variable not in scope"

| GenT(alpha , t1) ->

if contains alpha delta

then failwith "rebound type variable"

else wft (alpha ::delta) t1

end

(* ... continued ... *)

PennKey: 15

(* Type substitution: implements t1{t/alpha} *)

let rec tsubst (t1:tp) (t:tp) (alpha:tvar) : tp =

begin match t1 with

| BoolT -> BoolT

| FunT(t11 , t12) -> FunT(tsubst t11 t alpha , tsubst t12 t alpha)

| VarT (beta) ->

if alpha = beta then t else VarT(beta)

| GenT(beta , t11) ->

if alpha = beta then t1 else GenT(beta , tsubst t11 t alpha)

end

(* Compute the type of an exp , raising an error if there is no such type

Returns the type t such that delta ; gamma |- e : t

*)

let rec typecheck (delta:typ_environment) (gamma:environment) (e:exp) : tp =

begin match e with

| Lit i -> BoolT

| Var x -> lookup x gamma

| Fun (arg , t, body) ->

let _ = wft delta t in

FunT(t, typecheck delta ((arg ,t):: gamma) body)

| App (e1 , e2) ->

begin match (typecheck delta gamma e1, typecheck delta gamma e2) with

| (FunT(t1 , t2), t3) ->

if t1 = t3 then t2

else failwith "function argument mismatch"

| _ -> failwith "tried to apply non -function"

end

| Gen(alpha , e1) -> (* TODO *)

| Ins(e1 , t) -> (* TODO *)

end

end (* TC Module *)

KUDOS-ONLY BONUS QUESTION:
There is a subtle bug in the code for the App case of typecheck. This bug does not affect any of the
answers to questions in this exam, and isn’t relevant to the code you are asked to write. What is the bug?
When would it be triggered? How would you fix it? (Hint: the code is correct for the simply-typed
lambda calculus; adding polymorphic types breaks it.) Mail your answer to cis341@seas.upenn.edu.

DO NOT WORRY ABOUT OR ATTEMPT THIS BONUS PROBLEM UNLESS YOU FINISH THE REST
OF THE EXAM AND ARE BORED

PennKey: 16

