
CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Midterm is coming soon (2 days from now!)

▪ Meyerson B1 7:00 pm to 9:00pm Thursday 10/19

▪ If you can’t make the time, please send me an email ASAP

❖ Midterm Policies posted on the course website. Please
read through them.

▪ You are allowed 1 page of notes 8.5 x 11 double sided notes

▪ Clobber policy: can show growth by doing better on the second
midterm

❖ Recitation After lecture will be midterm review

❖ Lecture today will be scheduling, and then exam review

▪ Thurs will continue the exam review we do today. 2

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of
some things. (for example: I will provide parts of the man pages
for various system calls)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

3

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must
remember some things

▪ High level concepts or fundamentals. I do not expect you to
remember every minute detail.

• E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll
everywhere questions)

4

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part
even if you haven’t finished the current part

5

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic
name.

❖ Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

❖ State how the topic(s) relate to the exam problem and
answer the question being asked.

6

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review
are still testable

7

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Topics

❖ Processes

❖ Page Tables

❖ Page Replacement Policy

❖ Memory Allocation

❖ Caches

❖ Threads

8

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes

❖ We want to write a in C program that will compile and
evaluate some other program. The program we are
grading is similar to penn-shredder. For this program we
write, lets assume we are running penn-shredder once
and evaluating it. We need to be able to:

▪ Specify the input and get output of the shredder

▪ Set a time limit so that penn-shredder doesn’t go infinite

▪ Setup penn-shredder to receive signals from the keyboard (e.g.
CTRL + C and CTRL + Z)

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain any system call you specify
non-zero for

9

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

10

System Call Number Justification

fork()

execvp()

pipe()

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

11

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe()

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

12

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

13

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill()

signal()

tcsetpgrp()

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

14

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 Debatable, can be justified if you used it.
I use it to kill the child after timeout has occurred.
Better than just using alarm in child since we can
handle the timeout more elegantly and print out an
error

signal()

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

15

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

signal() 1 Debatable again. Used to register SIGALRM for
timeout. Could be avoided if we register alarm in child

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

16

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

signal() 1 … (trimmed for space see previous slides)

tcsetpgrp() 1 Debatable again. used so penn-shredder has control of
terminal and so it will get the keyboard signals and our
program won’t. Could instead register the signals in
our program with signal and use kill in handler to send
to child.

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity about page tables is that the page table itself
exists in memory. However, the memory that is used to
store some page tables are usually “pinned” into memory,
meaning that those page tables cannot be
evicted/removed from physical memory.

❖ Why is it important that some of the memory
representing these page tables remain “pinned”? Please
explain your answer.

17

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity about page tables is that the page table itself
exists in memory. However, the memory that is used to
store some page tables are usually “pinned” into memory,
meaning that those page tables cannot be
evicted/removed from physical memory.

❖ Why is it important that some of the memory
representing these page tables remain “pinned”? Please
explain your answer.

18

Page tables exist in virtual memory, meaning we may need to do a lookup of the
address of nodes in the page table. If we don’t have some addresses pinned or
specially handled, we could not do translations since we wouldn’t know what
physical memory contains the page table entries we need

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q2

❖ When we first brought up the idea of page tables, we
imagined the page table as one giant array containing one
page table entry for each page. We investigated other
page table implementations (inverted and multi-level)
since this “big array” model uses up A LOT of space for
entries that may never be used.

❖ Let’s say we had a virtual page number that we wanted to
translate to a physical page number. How would the
lookup speed of our original “big array” page table model
compare to the more space efficient page tables
implementations?

19

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q2

❖ When we first brought up the idea of page tables, we
imagined the page table as one giant array containing one
page table entry for each page. We investigated other
page table implementations (inverted and multi-level)
since this “big array” model uses up A LOT of space for
entries that may never be used.

❖ Let’s say we had a virtual page number that we wanted to
translate to a physical page number. How would the
lookup speed of our original “big array” page table model
compare to the more space efficient page tables
implementations?

20

It would be constant time lookup and only one memory access. We can index into
the page table using the virtual page number we want to ranslate

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q3

❖ One thing that is different about inverted page tables is
that the page table has one entry per physical page
instead of per virtual page.

❖ Because of this, a page table can be shared across all
processes instead of being per process. This is since all
processes share physical memory.

❖ If a page table is shared across all processes, what issues
could this cause? How does an inverted page table handle
this issue?

21

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Tables Q3

❖ One thing that is different about inverted page tables is
that the page table has one entry per physical page
instead of per virtual page.

❖ Because of this, a page table can be shared across all
processes instead of being per process. This is since all
processes share physical memory.

❖ If a page table is shared across all processes, what issues
could this cause? How does an inverted page table handle
this issue?

22

We need to make sure processes only use memory allocated to that process.
Inverted page table also stores the process ID with each entry and uses it in the
hash to make sure only processes with the specified ID accesses that entry

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Seungmin and Nate are debating the best page
replacement policy. One of them says that LRU is strictly
better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not
true, provide an example of page accesses that counters
this claim.

23

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Seungmin and Nate are debating the best page
replacement policy. One of them says that LRU is strictly
better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not
true, provide an example of page accesses that counters
this claim.

24

False: consider we have 4 physical pages and have the reference string:
0 1 2 3 0 4 1 2 3
In LRU we get 8 page faults
In FIFO we get 5 page faults

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Q1

❖ Slab allocator is really fast, but it would be inconvenient
to replace malloc with a slab allocator. Why is that?

❖ How much internal and external fragmentation does a
slab allocator have?

25

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Q1

❖ Slab allocator is really fast, but it would be inconvenient
to replace malloc with a slab allocator. Why is that?

❖ How much internal and external fragmentation does a
slab allocator have?

26

Slab allocator only handles allocations of a specific size. If we replaced
malloc with it, we could not handle allocations of all sizes. Allocation
requests that are too big would not work and allocations of a small size
would have a lot of internal fragmentaiont

Minimal/none for both ☺ Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our
memory so that there is minimal space between each allocated chunk

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ In some instances, we want to allocate a lot of items and
limit those allocations to one scope. We call our allocator
a “temp_allocator” since it allocates things that are
expected to be temporary to some scope.

❖ For example, Consider we start with:

▪ Note that there is no metadata, just these two pointers

❖ Then we allocate 4 bytes

27

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1024 bytes

start_ptr

end_ptr

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ For example, Consider we start with:

▪ Note that there is no metadata, just these two pointers

❖ Then we allocate 4 bytes

❖ Then we allocate 16 bytes

28

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1020 bytes

start_ptr

end_ptr

Alloc’d Alloc’d …start_ptr

end_ptr

1008 bytes

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ Once we are done with our temporaries, we free the all
allocations, and we can then use it again as if “fresh”

▪ Looks the same as when we started!

❖ That is the entire API

❖ Example usage:

29

…

1024 bytes

start_ptr

end_ptr

temp_allocator t_alloc = init_allocator();

for (many iterations) {

 int *ptr = allocate(t_alloc, 4 bytes);

 image *img = allocate(t_alloc, 1024 bytes);

 // a bunch of other allocations local

 // to this scope

 clear_allocs(t_alloc);

}

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ How fast is our allocator at allocating things on average?
At freeing things?

❖ What does the internal and external fragmentation look
like with our allocator?

❖ Why can’t we use this as a replacement for malloc
maintaining lists of allocated & freed memory?

30

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ How fast is our allocator at allocating things on average?
At freeing things?

❖ What does the internal and external fragmentation look
like with our allocator?

❖ Why can’t we use this as a replacement for malloc
maintaining lists of allocated & freed memory?

31

Minimal/none for both ☺ Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our
memory so that there is minimal space between each allocated chunk

Very Fast, constant time for each

Malloc manages things that are freed individually that may be allocated
for varying lengths of time. This allocator assumes everything can be
allocated together.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 32

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 33

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

Roughly every other time we access a point
struct, it will already be in the cache. The other
50% of the time, it needs to be fetched from
memory

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

34

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

35

Change point to just be:
struct point {

 double x, y;

}

Then Store two arrays:
point arr1[100];

color arr2[100];

// point at index I

// has color arr2[i]

Each time we access a point,
we can now load 4 points into
the cache. We now get ~25
cache misses and 75 hits

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ We have seen three concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

▪ User Level Threads (ucontext_t)

• We create threads at user level, leave them unknown to the OS and
schedule them ourselves

• N:1 threading model

36

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

37

Processes pthread ucontext_t

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

38

Processes pthread ucontext_t

Can share files and concurrently access those files. Yes Yes Yes

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

39

Processes pthread ucontext_t

Can share files and concurrently access those files. Yes Yes Yes

Can communicate through pipes (can’t redirect
w/o affecting other threads though)

Yes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

40

Processes pthread ucontext_t

Can share files and concurrently access those files. Yes Yes Yes

Can communicate through pipes Yes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes No

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

41

Processes pthread ucontext_t

Can share files and concurrently access those files. Yes Yes Yes

Can communicate through pipes Yes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes No

Modify and read the same data structure that is
stored in the heap

No Yes Yes

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Fall 2023L13: Midterm ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

42

Processes pthread ucontext_t

Can share files and concurrently access those files. Yes Yes Yes

Can communicate through pipes Yes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes No

Modify and read the same data structure that is
stored in the heap

No Yes Yes

Switch to another concurrent task when one
makes a blocking system call.

Yes Yes No

	Default Section
	Slide 1: Midterm Review Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Midterm Philosophy / Advice (pt. 1)
	Slide 4: Midterm Philosophy / Advice (pt. 2)
	Slide 5: Midterm Philosophy / Advice (pt. 3)
	Slide 6: Midterm Philosophy / Advice (pt. 4)
	Slide 7: Disclaimer
	Slide 8: Topics
	Slide 9: Processes
	Slide 10: Processes Cont.
	Slide 11: Processes Cont.
	Slide 12: Processes Cont.
	Slide 13: Processes Cont.
	Slide 14: Processes Cont.
	Slide 15: Processes Cont.
	Slide 16: Processes Cont.
	Slide 17: Page Tables Q1
	Slide 18: Page Tables Q1
	Slide 19: Page Tables Q2
	Slide 20: Page Tables Q2
	Slide 21: Page Tables Q3
	Slide 22: Page Tables Q3
	Slide 23: Page Replacement Policy
	Slide 24: Page Replacement Policy
	Slide 25: Memory Allocation Q1
	Slide 26: Memory Allocation Q1
	Slide 27: Memory Allocation Part 2
	Slide 28: Memory Allocation Part 2
	Slide 29: Memory Allocation Part 2
	Slide 30: Memory Allocation Part 2
	Slide 31: Memory Allocation Part 2
	Slide 32: Caches Q1
	Slide 33: Caches Q1
	Slide 34: Caches Q2
	Slide 35: Caches Q2
	Slide 36: Threads
	Slide 37: Threads
	Slide 38: Threads
	Slide 39: Threads
	Slide 40: Threads
	Slide 41: Threads
	Slide 42: Threads

