
CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Exam Review
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Administrivia

❖ Reach out to TA’s to schedule PennOS Demo
ASAP

▪ Today and tomorrow are the last days to demo

▪ You should use the version of PennOS you
submitted unless you got prior approval to use one
with small bug fixes.

❖ Exam is Thus 7-9pm in Meyerson B1

▪ Exam policies and review materials will be posted
after lecture.

2

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Administrivia

❖ Two things due before Reading Days, will be
released after the exam

▪ Check-in (Short survey), done anonymously and
pass/fail

▪ Team Evaluation for PennOS

• Pass/fail

• Done individually, you will describe how much and
what everyone contributed to pennos

• We will use this to handle cases where there was a
large imbalance in the work done.

• If there are big inconsistencies between team
members, we will investigate 3

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of
some things. (for example: I will provide parts of the man pages
for various system calls)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

5

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must
remember some things

▪ High level concepts or fundamentals. I do not expect you to
remember every minute detail.

• E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll
everywhere questions)

6

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part
even if you haven’t finished the current part

7

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic
name.

❖ Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

❖ State how the topic(s) relate to the exam problem and
answer the question being asked.

8

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review
are still testable

❖ Recitation after lecture is exam review

9

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Lecture Outline

❖ Processes vs Threads

❖ Memory Allocation

❖ Caches

❖ Scheduling

❖ File System Block Allocation

❖ RAID

❖ Threads & Data Races

❖ Deadlock

10

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Sometimes we want to call software that is written in
another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

11

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Probably threads. Threads and processes are both
parallelizable, but processes have a larger overhead since
they have separate address spaces that need to be
switched between.

12

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Sometimes we want to call software that is written in
another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

❖ Part of exec is that it replaces the entire address space
with the program we want to run. The address space
initial state is (mostly) specified by the program
executable. If we tried to load in the program into just
one thread, it would affect the memory space that is
being shared with other threads

13

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which
ones is likely faster than the other and why?

14

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which
ones is likely faster than the other and why?

15

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Likely the one on the right. Instead of calling malloc, the array is a static size on the stack.
The stack allocation is quicker to allocate and free.

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Lets say that in addition to malloc, we also had a custom
slab allocator implemented that could allocate chunks of
space that is 64 bytes (16 integers) large.

❖ What is one reason we may prefer the custom slab
allocator to malloc?

❖ What is one reason we may prefer malloc?

16

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at
a low level (in assembly)?

17

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at
a low level (in assembly)?

18

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Just need to decrement the stack
pointer by 10 * sizeof(int) and there
is enough space to store the array
on the stack now :P

Would also accept more vague
answers like (grow the stack by 10
integers)

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Caches

❖ The most common way to store a sequence of elements in
C++ and most languages is a dynamically resizable array
(e.g. a vector).

A vector of <int> looks something like this in memory:

19

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5, 7, 8};

}

stack

heap

v
size_t size = 3

size_t capacity = 3

int* data =

3

4

5

7

8

16 bytes 20 bytes

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does
a bool strictly need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

20

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does
a bool strictly need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you
probably don’t have to call malloc as often and will have better
cache performance

21

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1
byte per bool)

▪ If we use a vector<bool> that represents each bool with a
single bit

22

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1
byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a
single bit
• 1 cache miss, 119 cache hits

23

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round
robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

24

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 25

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest
26

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

27

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

28

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the firs
block of each directory we search

❖ Linked List Allocation

▪ Assume we know the block number of the first block in root dir

❖ Linked List Allocation via FAT

▪ Assume we know where the root directory starts in the FAT.

▪ You can also assume a FAT entry is 2 bytes.

❖ I-nodes

▪ assume we know where the I Node for the root directory is 29

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the firs
block of each directory we search

❖ Linked List Allocation

▪ Assume we know the block number of the first block in root dir

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 5 reads to get and read the 5th block of the file

30

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the firs
block of each directory we search

❖ Linked List Allocation via FAT

▪ Assume we know where the root directory starts in the FAT.

▪ You can also assume a FAT entry is 2 bytes.

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 1 read to get and read the 5th block of the file
31

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ I-nodes

▪ assume we know where the I Node for the root directory is

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the inode for /home/

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the inode for /home/me/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 1 read for the inode of .bashrc

▪ 1 read to get and read the 5th block of the file

▪ 7 disk reads

32

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to
write to the 5th block of the file?

❖ Despite not having the best numbers, I nodes are still
chosen over FAT. Why is this the case?

33

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to
write to the 5th block of the file?

▪ Nothing changes, we would just write to the 5th block of the file
instead of reading it.

❖ Despite not having the best numbers, I nodes are still
chosen over FAT. Why is this the case?

▪ FAT takes up a lot of memory because we are caching the state of
the entire filesystem in memory.

▪ Inodes allow us to instead cache the information for relevant files
in memory, so much lower memory consumption and similar
performance for the most case.

34

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID

❖ You are deciding between RAID 0, RAID 1, RAID 4 and
RAID 5 for a system you are working on.

▪ Assume we have 10 Disks available to us and a parity to data ratio
of 1:4.

❖ Which RAID level allows for the most possible parallel
reads? Which one provides the least? Why?

❖ What if we wanted to see which RAID level provides the
most parallel writes? Which one provides the least? Why?

❖ Note: We assumed all reads/writes are to 1 data block
35

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID Level 0

❖ Array of Disks with block-level striping

❖ If we have a file that spans multiple blocks, we can split
those blocks across our array of drives

36

RAID

Block 0 Block 1

Block 2

Block 4

Block 3

Block 4

Drive 0 Drive 1

Can be more than 2 disks, just keeping it small for slides

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID Level 1

❖ Do the same thing as RAID 0, but each drive has a
duplicate “backup” drive

37

RAID

Block 0 Block 1

Block 2

Block 4

Block 3

Block 4

Drive 0 Drive 1

Block 0

Block 2

Block 4

Drive 0 - copy

Block 1

Block 3

Block 4

Drive 1 - copy

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID 4

❖ RAID 4 is like RAID 0, but we have an extra disk dedicated
to storing the parity (which you just sorta calculated!)

❖ In this example:

▪ the blocks dedicated to storing parity are sharded.

▪ P0-3 is the XOR of strip 0, 1, 2, and 3.

❖ We only need to have 1 disk dedicated to error recovery

❖ If one disk fails, we can recalculate it by using the parity
and the data of the other disks

38

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID 5

❖ Same as RAID 4, but we distribute the parity across
different disks.

❖ Why?

▪ Whenever we write to a block, we must also update the parity.
In RAID 4, this means every write had to go also go through the
parity disk, which means we can’t parallelize write requests :/

▪ In RAID 5, we distribute the parity so that the workload of
managing parity is spread across all disks.

39

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID

❖ You are deciding between RAID 0, RAID 1, RAID 4 and
RAID 5 for a system you are working on.

▪ Assume we have 10 Disks available to us and a parity to data ratio
of 1:4.

❖ Which RAID level allows for the most possible parallel
reads? Which one provides the least? Why?

▪ Best: RAID 0 or RAID 1

▪ Worst: RAID 4

❖ What if we wanted to see which RAID level provides the
most parallel writes? Which one provides the least? Why?

▪ Best: RAID 0

▪ Worst: RAID 4

40

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID

❖ Suppose that we took RAID 5 and had parity blocks per
stripe instead of 1. Each of the two parity blocks use a
different algorithm to calculate them in such a way that
makes the system tolerant to two disk failures instead of
1.

What are two downsides of this model compared to RAID
level 5?

41

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

RAID

❖ Suppose that we took RAID 5 and had parity blocks per
stripe instead of 1. Each of the two parity blocks use a
different algorithm to calculate them in such a way that
makes the system tolerant to two disk failures instead of
1.

What are two downsides of this model compared to RAID
level 5?

▪ Increased space spent for storing parity

▪ Slower writes, need to write to more blocks in the file system and
need to calculate parity twice

42

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads.
Assume that file.txt is large file containing the contents of
a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to lock and unlock?)

43

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

44

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

45

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

46

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

47

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

48

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

49

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

▪ Busy waiting possible
in second_thread.
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once
ready

50

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Deadlock

❖ Consider we are working with a data base that has N
numbered blocks. Multiple threads can access the data
base and before they perform an operation, the thread
first acquires the lock for the blocks it needs.

▪ Example: Thread1 accesses B3, B5 and B1. Thread2 may want to
access B3, B9, B6. Here is some example pseudo code:

51

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

52

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists
them in a different order. Thread 1 gets B2, Thread 2 get B4, and we
deadlock.

53

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Deadlock

▪ Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for
these transactions even if two thread have completely separate
blocks they operate on, they cannot run in parallel.

54

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Fall 2023L26: Exam ReviewUniversity of Pennsylvania

Deadlock

▪ How can we fix this (without locking the whole database
if that even works)?

▪ Have each thread acquire the locks in a strict increasing
numerical order. This prevents any cycles from happening

55

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

	Default Section
	Slide 1: Exam Review Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Midterm Philosophy / Advice (pt. 1)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Lecture Outline
	Slide 11: Processes vs Threads
	Slide 12: Processes vs Threads
	Slide 13: Processes vs Threads
	Slide 14: Memory Allocation
	Slide 15: Memory Allocation
	Slide 16: Memory Allocation
	Slide 17: Memory Allocation
	Slide 18: Memory Allocation
	Slide 19: Caches
	Slide 20: Caches
	Slide 21: Caches
	Slide 22: Caches
	Slide 23: Caches
	Slide 24: Scheduling
	Slide 25: Scheduling
	Slide 26: Scheduling
	Slide 27: Scheduling
	Slide 28: Scheduling
	Slide 29: File System Block Allocation
	Slide 30: File System Block Allocation
	Slide 31: File System Block Allocation
	Slide 32: File System Block Allocation
	Slide 33: File System Block Allocation
	Slide 34: File System Block Allocation
	Slide 35: RAID
	Slide 36: RAID Level 0
	Slide 37: RAID Level 1
	Slide 38: RAID 4
	Slide 39: RAID 5
	Slide 40: RAID
	Slide 41: RAID
	Slide 42: RAID
	Slide 43: Threads & Data Races
	Slide 44: Threads & Data Races
	Slide 45: Threads & Data Races
	Slide 46: Threads & Data Races
	Slide 47: Threads & Data Races
	Slide 48: Threads & Data Races
	Slide 49: Threads & Data Races
	Slide 50: Threads & Data Races
	Slide 51: Deadlock
	Slide 52: Deadlock
	Slide 53: Deadlock
	Slide 54: Deadlock
	Slide 55: Deadlock

