
0/7 Questions Answered

Check-in Quiz 00 C, Memory, fork(), exec()

Q1
1 Point

What are the final values of the following variables by the end of the
main program? If a value would be set using "Undefined Behavior" or
the program would crash, answer with a question mark (?).

#include <stdio.h>

typedef struct point_st {

int x, y;

} Point;

typedef struct circle_st {

int radius;

 Point center;

} Circle;

void mystery(Circle c, int scale, Circle* output) {

 c.center.x *= scale;

 c.center.y *= scale;

 *output = c;

}

int main() {

 Point point = {2, 3};

 Circle circle1 = {3, point} ;

 Circle circle2;

 mystery(circle1, 3, &circle2);

 point.x = 59;

 point.y = 50;

printf("Circle1 center x: %d, y: %d\n", circle1.center.x, circle1.center.y);

printf("Circle2 center x: %d, y: %d\n", circle2.center.x, circle2.center.y);

}

circle1.center.x

circle1.center.y

circle2.center.x

circle2.center.y

Save Answer

Q2
2 Points

The following code, when run, has two processes, a child and a parent.
The child and the parent each modify and print out a global value.

What are the possible values printed by the parent, and by the child?

If a process can has multiple possible values, please answer with a
comma separated list of numbers with no spaces (e.g. 1,2,3)
If there is only one possible answer for a process, please answer with a
number only (e.g. 1).

int global_num = 1;

void function() {

 global_num++;

printf("%d\n", global_num);

}

int main() {

pid_t id = fork();

if (id == 0) {

 function();

return EXIT_SUCCESS;

 }

 global_num += 2;

printf("%d\n", global_num);

return EXIT_SUCCESS;

}

Parent output:

Child output:

Save Answer

Q3
2 Points

How many times does the print statement get executed?

int main() {

for(int i = 0; i < 4; i++) {

 fork();

 }

printf("a\n");

return EXIT_SUCCESS;

}

please answer with a number only

Save Answer

Q4 Valgrind Errors
3 Points

In this question, we've taken what we wrote in lecture as get_input.c
and slightly modified it so that there is no truncation. This program
should work with all inputs <= 100 characters in length.

Here is the modified code with line numbers:

1 #include <unistd.h> // for read() and write()

2 #include <stdlib.h> // for malloc, EXIT_SUCCESS

3 #include <string.h> // for strlen

4

5 #define MAX_INPUT_SIZE 100

6

7 char* read_stdin();

8

9 void print_stdout(char* to_print);

10

11 int main(int argc, char** argv) {

12 char* str = read_stdin();

13 if (str == NULL) {

14 return EXIT_SUCCESS;

15 }

16

17 print_stdout(str);

18

19 return EXIT_SUCCESS;

20 }

21

22 void print_stdout(char* to_print) {

23

24 write(STDOUT_FILENO, to_print, strlen(to_print));

25 }

26

27 char* read_stdin() {

28 char* str = (char*) malloc(sizeof(char) * (MAX_INPUT_SIZE + 1));

29 if (str == NULL) {

30 return NULL;

31 }

32

33 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

34 if (res <= 0) {

35 free(str);

36 return NULL;

37 }

38

39 return str;

30 }

Unfortunately, there are some valgrind errors in this code. When run
under valgrind and the user inputs "hello" then hits enter, we get this:

==1867== Memcheck, a memory error detector

==1867== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1867== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info

==1867== Command: ./get_input

==1867==

hello

==1867== Conditional jump or move depends on uninitialised value(s)

==1867== at 0x484ED28: strlen (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so)

==1867== by 0x109206: print_stdout (get_input.c:37)

==1867== by 0x1091E3: main (get_input.c:31)

==1867==

hello

==1867==

==1867== HEAP SUMMARY:

==1867== in use at exit: 101 bytes in 1 blocks

==1867== total heap usage: 1 allocs, 0 frees, 101 bytes allocated

==1867==

==1867== LEAK SUMMARY:

==1867== definitely lost: 101 bytes in 1 blocks

==1867== indirectly lost: 0 bytes in 0 blocks

==1867== possibly lost: 0 bytes in 0 blocks

==1867== still reachable: 0 bytes in 0 blocks

==1867== suppressed: 0 bytes in 0 blocks

==1867== Rerun with --leak-check=full to see details of leaked memory

==1867==

==1867== Use --track-origins=yes to see where uninitialised values come from

==1867== For lists of detected and suppressed errors, rerun with: -s

==1867== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Q4.1 Valgrind Errors: read_stdin
1 Point

One of these errors is accessing unitialized memory:

==1867== Conditional jump or move depends on uninitialised value(s)

==1867== at 0x484ED28: strlen (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so)

==1867== by 0x109206: print_stdout (get_input.c:24)

==1867== by 0x1091E3: main (get_input.c:17)

Which line should something be added to remove this error? You are
not allowed to add a function call to something like memset , the fix
should be a relatively simple operation.

Hint: It is not line 24, which is where the access of unitialized memory
occurs. Consider how the unitialized memory was accessed and where
we can prevent/initialize it.
Hint2: This relates to a really common bug with C "strings" mentioned
in lecture

Save Answer

Q4.2 Valgrind Errors: read_stdin fix
1 Point

On the line you selected, what should the line look like after it has
been modified?

Note: gradescope can be picky about the formatting of your answer.

• Don't include a semicolon in your answer
• have spaces around any assignment "=" or arithmetic operators "+", "-", etc

If you are sure you have the right answer but gradescope isn't working, feel
free to post privately on Ed and we will confirm

here are some example formats if, if this helps:
arr[13] = 4 + 6 / 2

x = 16 + 2 * arr[0]

char c = '\0'

Line 16

Line 23

Line 28

Line 32

Line 38

Save Answer

Q4.3 Memory Leak
1 Point

This program also allocates memory with malloc but does not free it,
causing a memory leak. This memory needs to be free 'd at some point
by calling the free function. Which of the following lines could a call to
free be added that would resolve the memory leak and have the
program behave as expected. If there are multiple answers, choose the
line that would be executed first.

Save Answer

Q5 fork + exec
2 Points

Bellow we have a small program that uses both fork and exec:

#include <stdio.h> // for printf()

#include <unistd.h> // for execve()

#include <stdlib.h> // for exit() and EXIT_FAILURE

int main(int argc, char* argv[]) {

char* args[] = {"/bin/echo", "T", NULL};

char* envp[] = { NULL };

pid_t pid = fork();

printf("A\n");

Line 16

Line 18

Line 23

Line 38

if (pid == 0) {

 execve(args[0], args, envp);

exit(EXIT_FAILURE);

 }

printf("O\n");

return EXIT_FAILURE;

}

What is the output of the parent process?
What is the output of the child process?

Do not include new lines in your answer, just the characters such
as TA or A is what is expected

Parent output:

Child output:

Save Answer

Save All Answers Submit & View Submission

