
0/6 Questions Answered

Check-in Quiz 02 pipe(), signals(), critical sections

Q1 pipe()
5 Points

For this problem, read and consider the following code:

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/wait.h>

int main(int argc, char* argv[]) {

int pipe_fds[2];

 pipe(pipe_fds);

/*** 1 ***/

pid_t child1 = fork();

if (child1 == 0) {

// first child

 dup2(pipe_fds[1], STDOUT_FILENO);

 close(pipe_fds[0]);

/*** 2 ***/

// should print "hello" to the pipe

char* args[] = {"echo", "hello", NULL};

 execvp(args[0], args);

 perror("execvp error");

exit(EXIT_FAILURE);

 } else if (child1 < 0) {

// error!

 perror("fork error");

exit(EXIT_FAILURE);

 }

/*** 3 ***/

pid_t child2 = fork();

if (child2 == 0) {

// second child

 dup2(pipe_fds[0], STDIN_FILENO);

 close(pipe_fds[0]);

/*** 4 ***/

// should read from the pipe till EOF

// print to stdout everything it reads

char* args[] = {"cat", NULL};

 execvp(args[0], args);

 perror("execvp error");

exit(EXIT_FAILURE);

 } else if (child2 < 0) {

 perror("fork error");

exit(EXIT_FAILURE);

 }

/*** 5 ***/

 close(pipe_fds[0]);

 close(pipe_fds[1]);

int wstatus;

// incase you haven't seen a do-while loop,

// it always does one iteration of the loop, and then

// it acts like a while loop after the first iteration.

//

// For example, these two do the same thing:

// ----------------------------

// some_function();

// while (condition) {

// some_function();

// }

// ----------------------------

// do {

// some_function();

// } while(condition);

// ----------------------------

do {

if (waitpid(child1, &wstatus, 0) == -1) {

 perror("waitpid error");

exit(EXIT_FAILURE);

 }

 } while (!WIFEXITED(wstatus) && !WIFSIGNALED(wstatus)); /*** 6 ***/

do {

if (waitpid(child2, &wstatus, 0) == -1) {

 perror("waitpid error");

exit(EXIT_FAILURE);

 }

 } while (!WIFEXITED(wstatus) && !WIFSIGNALED(wstatus)); /*** 7 ***/

/*** 8 ***/

return EXIT_SUCCESS;

}

Q1.1 What is the problem?
1 Point

There is a bug in this code, causing it to have the incorrect
behaviour. The intended behaviour is to do the same thing as
echo hello | cat in the terminal.

What is the kind of error this program faces?

Save Answer

Q1.2 What line to edit?
1 Point

There is only one line that needs to be edited to get the correct
behaviour. Throughout the program there are 8 comments in
the style of /*** 7 ***/ with a varying number in the comment.
One of these lines with a comment can be edited so that the
program works. Which line is it?

Note that /*** 6 ***/ and /*** 7 ***/ are the only ones that
are on a line that already has code.

Parent does not wait for the children properly

Child2 does not inherit the pipe correctly and cannot read
from it

Child1 does not redirect stdout to the pipe correctly

Child2 never hits EOF when reading from the pipe

Child1 never sends EOF when writing to the pipe

The arguments to execvp are malformed

For the other ones, you can still "edit" the line by replacing the
line with a line that has code.

Save Answer

Q1.3 How do we fix it?
3 Points

For the selected line above, please provide what the line
should look like to have the expected behaviour.

Be sure to follow the same spacing and style as the provided
code, gradescope is picky about the formatting for the
accepted answer.

If you are submitting, and think you are correct, but think it
may be a formatting issue; make a private post on Ed and
course staff will help.

Save Answer

Q2 Critical Section
3 Points

/*** 1 ***/

/*** 2 ***/

/*** 3 ***/

/*** 4 ***/

/*** 5 ***/

/*** 6 ***/

/*** 7 ***/

/*** 8 ***/

In lecture, we defined a critical section slightly incorrectly. The
definition didn't properly cover all possible cases that should
be considered a critical section. The wording was also made
slightly better. Wording that was added/changed are in bold.

Here is an updated definition below:

There can be issues when one or more resources are
accessed concurrently that causes the program to be put in an
unexpected, invalid, or error state.

These sections of code where these accesses happen, called
critical sections, need to be protected from concurrent
accesses happening during it

Q2.1 List
2 Points

Consider the example with critical sections we discussed in
lecture:

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

this->tail->next = node;

this->tail = node;

}

void handler(int signo) {

 list_push(list, NaN);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

float f;

while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

// omitted: do stuff with list

}

With this example we also said you could:

• Assume we have implemented a linked list, and it works
• Assume list is an initialized global linked list

In lecture we, said to fix this we could block signals temporarily
in main() and handler() just before they list_push() and then
unblock right after we return from list_push()

Lets say that instead of changing main() and handler() , we
instead change list_push() to block signals. Which of the
following lines at minimum would need to be included in the
critical section to have the program work correctly.

Select all that apply:

Note the call to malloc would also be part of the critical
section, but I am just going to tell you that one since it would
be hard to know without thinking about how malloc() works

Save Answer

Q2.2 Vector
1 Point

A vector is data structure that represents a resizable array. For those
used to Java, think of it like an ArrayList .

Consider the following C snippet that outlines what a vector of float s

node->value = to_push;

node->next = NULL;

this->tail->next = node;

this->tail = node;

is and how we would push a value to the end of it

typedef struct vec_st {

size_t length;

size_t capacity;

float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

// assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

this->length += 1; // increment length to include it

this->eles[this->length - 1] = to_push; // add the ele to the end

}

Is there a critical section in the vec_push function? If so, what
line(s)?

Save Answer

Q3 Signals
2 Points

In lecture we talked about signal blocking and unblocking. This
is a slightly altered version of the code from delay_sigint.c
lecture code.

The difference being that the lecture code had main() wait for
SIGALRM to go off and then have main() unblock SIGINT . The
edited code below just has main() loop infinitely without
checking to see if the alarm goes off, and the handler()

There is no critical section in vec_push

There is a critical section, and it is the line this->length += 1;

There is a critical section, and it is the line
this->eles[this->length - 1] = to_push;

There is a critical section, and it includes both of the lines
mentioned in the above two answers

function that goes off when SIGALRM is raised will unblock the
SIGINT signal.

sigset_t mask;

sigset_t old_mask;

void handler(int signo) {

if (signo == SIGALRM) {

printf("alarm delivered\n");

if (sigprocmask(SIG_SETMASK, &old_mask, NULL) == -1) {

 perror("sigprocmask failed, idk how but it did");

exit(EXIT_FAILURE);

 }

 }

if (signo == SIGINT) {

printf("got sigint\n");

exit(EXIT_SUCCESS);

 }

}

int main() {

// initialize the set

if (sigemptyset(&mask) == -1) {

 perror("sigemptyset failed, idk how but it did");

exit(EXIT_FAILURE);

 }

// add SIGINT to the set

if(sigaddset(&mask, SIGINT) == -1) {

 perror("sigaddset failed, idk how but it did");

exit(EXIT_FAILURE);

 }

// block SIGINT

if (sigprocmask(SIG_BLOCK, &mask, &old_mask) == -1) {

 perror("sigprocmask failed, idk how but it did");

exit(EXIT_FAILURE);

 }

// not error checking cause I am too tired

 signal(SIGALRM, handler);

 signal(SIGINT, handler);

 alarm(5);

// infinitely loop, SIGINT should be able

// to terminate us after the alarm goes off

while (true) { }

return EXIT_SUCCESS;

}

Does this work? If not, what is the difference in behaviour?

Save Answer

Save All Answers Submit & View Submission

This program works the same as the original example
lecture code

If SIGINT is sent before the alarm goes off, it is handled
immediately and not delayed

SIGINT will always be blocked once main() blocks it

If SIGINT is sent after the alarm goes off, it will not be
handled correctly

SIGALRM is not handled correctly, and the handler does not
get invoked as expected

Segmentation Fault or other Memory Error

