Q1 I Point	
When will MML	J evict an entry from TLB? Select all that apply.
When a re TLB and T	quested virtual page number is missed in the LB is full.
U When a re	quested virtual page number is hit in the TLB.
When an e memory to evicted from	entry in the page table is evicted from o swap file and the same address is also om the TLB.
Save Answer	
Q2 1 Point	
The best-fit me fragmentation the first-fit sche	mory allocation scheme always results in less and satisfies more block requests compared to eme.
True	

Q3 2 Points

Lets say that someone wanted to allocate 99 contiguous pages using the buddy algorithm. You can assume that the buddy algorithm is able to complete this allocation request.

Q3.1 1 Point

How many pages would be allocated by the buddy algorithm?

Please simplify your answer to a number (e.g. 1337), do not leave any exponents or multiplication symbols in your answer.

Save Answer

Q3.2 1 Point

How many pages of the allocation would be fragmentation?

Please simplify your answer to a number (e.g. 1337), do not leave any exponents or multiplication symbols in your answer.

Q4 Cache 4 Points

For this question, assume that we are working in an architecture that has 64-byte cache lines.

Lets say we had the following C array:

```
// array of bytes. Array is 1024 long
uint8_t data[1024];
```

For simplicity, assume that:

- our L1 cache can only hold 1 cache line of the array data at a time
- any other data accessed outside of the array is inside the cache already (and won't be evicted)
- the array is aligned to a cache line (the first byte in the array is the beginning of a new cache line)

Lets say we had the following C Code to initialize the array:

```
// array of bytes. Array is 1024 long
uint8_t data[4096];
for (int i = 0; i < 1024; i++) {
   data[i] = rand() % 256; // assign it a random number
}</pre>
```

Q4.1 2 Points

How many times will the cache miss (data we access is not in the cache) when setting data[i]?

Assume that the cache originally contains no cache lines that contain a part of the data array.

Save Answer

Q4.2 2 Points

How many times will the cache hit (data we access is in the cache) when setting data[i]?

Save Answe	r	
Q5 Threads 2 Points	vs Processes	
Q5.1 1 Point		
Which of the	se are unique to every th	iread?
🗌 Data in	Files on Disk	
File Des	criptors	
Global V	/ariables	
🗌 Dynami	c Storage (The Heap)	
Local Va	ariables (The Stack)	
CPU Re	gisters	
[
Save Answe	r	

Data in Files on Disk	
File Descriptors	
Global Variables	
Dynamic Storage (The Heap)	
Local Variables (The Stack)	
CPU Registers	
Save Answer	
Save All Answers	Submit & View Submission >