
3/3 Questions Answered
Saved at 6:34 PM

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

1 of 10 12/5/2023, 6:35 PM

Check-in Quiz07, mutex and condition varaibles

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

2 of 10 12/5/2023, 6:35 PM

Q1 Mutex
8 Points

Consider the following code that is a modified version of some
of the lecture sample code.

We are writing a program that supports 1 producer thread
running producer_thread() that reads strings from stdin , and
pushes them onto a double ended queue deque . There is at
least one consumer thread running consumer_thread that will
wait till there is a string on the deque before removing it and
printing the value. There can be multiple consumer threads.

One big difference though is that we also have a boolean
variable that the producer thread can set, which will let the
consumer threads know they should exit.

We already have the mutex for the deque handled. Your job is
to make sure the bool_lock is properly acquired and released
so that no two threads access the boolean eof_read variable at
the same time.

Again, this is C++ code but only for the deque data structure so
that we do not need to implement our own deque . We went
over the data structure in lecture briefly. I hope it is mostly self
explanatory, but please post on Ed if you have questions
about anything regarding the premise of this question.

1 pthread_mutex_t deque_lock;

2 pthread_mutex_t bool_lock;

3

4 bool eof_read = false

5 deque<char*> strings;

6

7 void* producer_thread(void* arg) {

8

9 while (true) {

10 char* line = NULL;

11 size_t n = 0;

12

13 ssize_t val = getline(&line, &n, stdin);

14

15 // eof

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

3 of 10 12/5/2023, 6:35 PM

16 if (val < 0) {

17

18 eof_read = true;

19

20 pthread_exit(NULL);

21

22 }

23 pthread_mutex_lock(&deque_lock);

24 strings.push_back(line);

25 pthread_mutex_unlock(&deque_lock);

26 }

27 return NULL;

28 }

29

30 void* consumer_thread(void* arg) {

31

32 while(eof_read == false) {

33

34 pthread_mutex_lock(&deque_lock);

35 while (strings.size() == 0) {

36 pthread_mutex_unlock(&deque_lock);

37

38 if (eof_read == false) {

39

40 pthread_exit(NULL);

41

42 }

43

44 pthread_mutex_lock(&deque_lock);

45 }

46

47 char* to_print = strings.at(0);

48

49 strings.pop_front();

50 pthread_mutex_unlock(&deque_lock);

51 printf("%s\n", to_print);

52

53 free(to_print);

54

55 }

56

57 }

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

4 of 10 12/5/2023, 6:35 PM

Q1.1 lock
4 Points

On which lines, should we add the code
pthread_mutex_lock(&bool_lock); ?

Explanation

 Correct! We need to lock before each time we access the
boolean variable eof_read . This includes the bottom of the
while loop since once we reach the bottom, the condition
is checked which is the variable we are trying to protect
with the mutex .

14

17

19

21

31

33

37

39

41

43

46

54

56

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

5 of 10 12/5/2023, 6:35 PM

Save Answer Last saved on Dec 05 at 6:33 PM

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

6 of 10 12/5/2023, 6:35 PM

Q1.2 unlock
4 Points

On which lines, should we add the code
pthread_mutex_unlock(&bool_lock); ?

14

17

19

21

31

33

37

39

41

43

46

54

56

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

7 of 10 12/5/2023, 6:35 PM

Explanation

 Correct! We need to unlock after each time we access the
boolean variable eof_read so that other threads can access
the variable when we don't need it anymore. Note that due
after the access on line 38, there are two possible places
the thread can go, and we must release in both cases. If
we do not release before calling pthread_exit then the
mutex will remain locked after the thread has exited.

Save Answer Last saved on Dec 05 at 6:34 PM

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

8 of 10 12/5/2023, 6:35 PM

Q2 Condition Variables
2 Points

The following code creates two threads which each attempt to
increment a global integer 100 times per thread. main() prints
the global variable after joining both threads, which should be
200.

To make sure that there aren't any data races (bad thread
interleavings). Travis decides to use a condition variable and
mutex to make this work.

When this code is run, what happens?

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

const int LOOP_NUM = 100;

int sum_total = 0;

pthread_mutex_t lock;

pthread_cond_t cond;

void* thread_func(void* arg) {

 pthread_mutex_lock(&lock);

 pthread_cond_wait(&cond, &lock);

for (int i = 0; i < LOOP_NUM; i++) {

 sum_total++;

 }

 pthread_cond_signal(&cond);

 pthread_mutex_unlock(&lock);

return NULL;

}

int main(int argc, char** argv) {

pthread_t thd1, thd2;

 pthread_mutex_init(&lock, NULL);

 pthread_cond_init(&cond, NULL);

 pthread_create(&thd1, NULL, thread_func, NULL);

 pthread_create(&thd2, NULL, thread_func, NULL);

 pthread_join(thd1, NULL);

 pthread_join(thd2, NULL);

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

9 of 10 12/5/2023, 6:35 PM

printf("sum_total: %d\n", sum_total);

 pthread_mutex_destroy(&lock);

 pthread_cond_destroy(&cond);

return EXIT_SUCCESS;

}

Explanation

 Correct! both threads will immediately wait on the
condition variable and nothing will signal on the condition
variable for those threads to wakeup and resume.

Save Answer Last saved on Dec 05 at 6:33 PM

Save All Answers Submit & View Submission

Does not compile

Deadlocks/does not terminate

prints 200

Still has a data race, can't guarantee that the result is 200

Segmentation Fault

Submit Check-in Quiz07, mutex and condition varaibles | Gradescope https://www.gradescope.com/courses/589315/assignments/3701185/sub...

10 of 10 12/5/2023, 6:35 PM

https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522
https://www.gradescope.com/courses/589315/assignments/3701185/submissions/217870522

