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Lecture Outline

% Introduction & Logistics
= Course Overview
= Assighments & Exams
= Policies
+» C Refresher
" Memory Layout
= Demo (make, man pages)
= Malloc, free, pointers
stdin, stdout



CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher

Instructor: Travis McGaha

» UPenn CIS faculty member since August 2021
" First Semester with CIS 3800
= CIS 2400 in 21fa & 22fa
® CIT 5950 in 22sp & 23sp

» More on my personal website:
https://www.cis.upenn.edu/~tgmcgaha/

» Schedule meeting w/ me
» Unofficial office hours right after class
+ Official office hours TBD


https://www.cis.upenn.edu/~tqmcgaha/
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Course Overview

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

1

Memory Unit
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Course Overview

Process

Operating System

Computer
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Course Overview

OS does A LOT wmore

Process thav just printing,
Operating System [P reading nput, Video

display, and timer

Computer




University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

THEREISALOT
GOING ON TO
Operating System SUPPOR T-H'_[S

Computer
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Operating System

Computer
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Prerequisites

+ Course Prerequisites:
= CIS 2400

" Teamwork & Willingness/happy to spend substantial time coding

+» What you should be familiar with already:
" Cprogramming
= C Memory Model
= Computer Architecture Model
= Basic UNIX command line skills

+» HWO is tuned so that it will help refresh you on these.
" But it still covers new content!

= Even if you think you know C, get started sooner rather than later. i;
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CIS 3800 Learning Objectives

+» To leave the course with a better understanding of:
" How a computer runs/manages multiple programs
" How the previous point may affect the code we write
" How to read documentation

" Experience writing a massive programming project FROM
SCRATCH with others.

" More comfortable writing C code

+ Topics list/schedule can be found on course website

= Note: These topics may be tweaked

18
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Disclaimer

+ This is a digest, READ THE SYLLABUS

" https://www.seas.upenn.edu/~cis3800/current/documents/syllab
us

19
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Course Components: Textbook

+» Textbook (0)

" Textbooks recommended in pasts

- A.S. Tanenbaum. Modern Operating Systems (4th Edition onwards).
Prentice-Hall.

- W. Richard Stevens and Stephen A. Rago. Advanced Programming in
the UNIX Environment (2/e or 3/e). Addison-Wesley Professional.

= Systems for all: https://diveintosystems.org/book/
- Free online textbook, pretty well written

" Linux Man pages:
« https://linux.die.net/man/
« https://www.man7.org/linux/man-pages/

« The man command in the terminal
- DEMO:

— name a C function
— tcsetpgrp

20
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Course Components: Part 1

L)

>

» Lectures (~26)

" |ntroduces concepts, slides & recordings available on canvas
" |n lecture polling. Polls are not counted towards credit

% Pre-recorded videos (many)

" Entirely optional

>

" Goes over lecture material or demonstrates something for projects
% Check-ins “Quizzes” (~12)

= Unlimited attempt low-stake quizzes on canvas to make sure you
are caught up with material

>

" Lowest two are dropped

Midterms (2)

"= Two in-person exams, two pages of notes allowed
= Details TBD

D)

*

21
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Programming Facilities

» Docker
= Same environment as the autograder
" |nstructions for setup to be posted soon

» Speclab cluster, as a fallback incase Docker does not work
" |nstructions on course website

" To see status:
https://www.seas.upenn.edu/checklab/?lab=speclab

+» DO NOT use Eniac machines to develop projects
for this class!

22
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Project0 & 1

» Project O

Unix “Shell” — command interpreter (e.g. sh, bash, etc)

Excellent way to learn about how system calls are supported
and used.

Done individually
Code review
Will be posted soon!!

+ Project 1

Unix “Shell” — the real deal
Redirection, pipelines, background/foreground processing,

job control

Groups of two.

23
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PennOS

. Best way to learn about an operating systems is to
build one.

= Build all the main features of an OS (in emulation)
» Groups of 4.

» By the end of the project, you will:

= |Learn about how different subsystems in Unix interact with
each other

= | earn about priority scheduling, file systems, user shell
Interactions

= Become a really good and confident systems programmer

24
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PennOS

+» There Is a paper on this:
http://netdb.cis.upenn.edu/papers/pennos.pdf at an
ACM OS journal.

+» Group evaluation done by the end of semester. Team
member with lower than15% contribution to the group
will get grade downgrade.

25
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HW Policies

. Students who did not contribute to group

projects will get F grade regardless of overall
score.

» Late Policy
" You are given 5 late tokens.

"= Tokens are counted per student and can only be used on some
assignments.

" Two tokens used at max per assignment
= Each token grants 48 hours of extra time

" |f there are extenuating circumstances, please let me know

26
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LOO: Intro, C Refresher

University of Pennsylvania

Collaboration Policy Violation

+» You will be caught:
= Careful grading of all written homeworks by teaching staff

" Measure of Software Similarity (MOSS):
http://theory.stanford.edu/~aiken/moss/

= Successfully used in several classes at Penn

» Zero in assignment, zero for class participation (3%). F

grade if caught twice.
" First-time offenders will be reported to Office of Student Conduct
with no exceptions. Possible suspension from school

" Your friend from last semester who gave the code will have their
grade retrospectively downgraded.

27
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Collaboration Policy Violation

<« @Generative Al

= | am skeptical of its usefulness for your learning and for your
success in the course

= Some articles on the topic:
« https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but

« https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

= Not banned, but not recommended. Use your best judgement.

+» You will not help your overall grade and happiness:

" Quizzed individually during project demo, exams on project in
finals

" |f you can’t explain your code in OH, we can turn you away.
- This is different than being confused on a bug or with C, this is ok

= Personal lifelong satisfaction from completing PennQOS

28
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Course Grading

» Breakdown:
= Project O penn-shredder: (8%)
" Project 1 penn-shell: (18%)
= Project 2 PennOS: (37%)
" Exams (34%)
- 17% each
" Check-in Quizzes(3%)

+ Final Grade Calculations:
= | would LOVE to give everyone an A+ if it is earned

" Final grade cut-offs will be decided privately at the end of the
Semester. What is used in previous semester is in the syllabus

29
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Course Infrastructure

% Course Website: www.seas.upenn.edu/~cis3800/23fa/
= Materials, Schedule, Syllabus ...

» Docker or Speclab
" Coding environment for hw's

» Gradescope
= Used for HW Submissions

» Poll Everywhere
= Used for lecture polls

« Ed Discussion
® Course discussion board

CIS 3800, Fall 2023

30
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Getting Help

« Ed

" Announcements will be made through here

= Ask and answer questions

= Sign up if you haven’t already!

« Office Hours:

= Can be found on calendar on front page of course website
= Starts next week for all TAs

« 1-on-1’s:
® Can schedule 1-on-1’s with Travis

= Should attend OH and use Ed when possible, but this is an option
for when OH and Ed can’t meet your needs

CIS 3800, Fall 2023
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We Care

» | am still figuring things out, but we do care about you and
your experience with the course

= Please reach out to course staff if something comes up and you
need help

» PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

" We know that things can be tough, but please reach out if you
feel tempted. We want to help

= Read more on academic integrity in the syllabus

32
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@ Poll Everywhere pollev.com/tqm

+ Any questions, comments or concerns so far?

33
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Lecture Outline

% Introduction & Logistics
" Course Overview

" Assignments & Exams ] ]
| Will go through parts of this

= Policies .
relatively fast.

+ Crefresher

= Pointers Review this on your own

" Arrays

34
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Hello World in C

35
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Hello World: read()

36
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CIS 3800, Fall 2023

Aside: Memory

+ Where all data, code, etc are
stored for a program

+» Broken up into several
segments:
" The stack
" The heap
" The kernel
" Etc.

+ Each “unit” of memory has an
address

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

37
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POINTERS ARE EXTREMELY
IMPORTANT INC

« Variables that store addresses

" |t stores the address to somewhere in memory

Pointers

= Must specify a type so the data at that address can be interpreted

equivalent

» Generic definition:{ type* name; |or|type *name; |

" Example:| 1nt *ptr; ]

« Declares a variable that can contain an address

- Trying to access that data at that address will treat the data there as
anint

38
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Pointer Operators

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
" Can be used to read or write the memory at the address

" Example: [ int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

« Get the address of a variable with &

= &foo getsthe address of foo in memory

" Example: [ int a = 595;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

39
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TIuitial values

Pointer Example
are garbage

|
(int main (int argc, char** argv) ({ ) O0x2001 a -—
int a, b, c; | | | 0x2002 | b __
int* ptr; // ptr is a pointer to an int
0x2003 c Sk
a = 5; -
b = 3; 0x2004 | ptr
ptr = &a;
*ptr = 7;
c = a + Db;
return O;
}
\_ J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

40
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Pointer Example

(int main (int argc, char** argv) ({ ) O0x2001 a

int a, b, ¢; | | | 0x2002 | b

int* ptr; // ptr is a pointer to an int

0x2003 o] ——

— a = 5; -
. b < 3, 0x2004 | ptr

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

41



University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Example

(" int main (int argc, char** argv) ({ Y\ 0x2001] a 5
e B0 e , | | 0x2002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003| e ——
S 0x2004 | ptr | 0x2001
+— ptr = &a;
*ptr = /5
c =a + b;
return 0O;
}

- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

42
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Pointer Example

(int main (int argc, char** argv) ({ ) O0x2001 a 7
e By ey | | | 022002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003| e ——
S 0x2004 | ptr | 0x2001
ptr = &a;

+— *ptr = 7;
c =a + b;

return 0;

}
- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

43
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Pointer Example

(int main (int argc, char** argv) ({ ) 0x2001 a 7
e Eg g S | | | 022002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003 | e 10
S 0x2004 | ptr | 0x2001
ptr = &a;
*ptr = /5

T— ¢c = a + b;
return O;

}

- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

44
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pollev.com/tqm

@ Poll Everywhere

+» What does this code print?

(#include <stdio.h> )
#include <stdlib.h>
void modify int(int x) {
X = 55
}
int main () {
int num = 3;
modify int (num) ;
printf ("%d\n", num);
return EXIT SUCCESS;
}
\_ J

45
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@ Poll Everywhere

+» What does this code print?

+» How could we fix it?
E.g. make modify point
actually modify a point

LOO: Intro, C Refresher

pollev.com/tqm

/ginclude <stdio.h>
#include <stdlib.h>

typedef struct point st {
int x, y;
} Point;

void modify point (Point p) {
p.x = 3800;
p.y = 4710

}

int main() {
Point p = {1100,
modify point(p);
printf ("%d, %d\n", p.x,
return EXIT SUCCESS;

2400} ;

P.Y);

\j

46
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Demo: pass_by.c

» Everything in Cis pass-by value (e.g. a copy is passed to
the function)

» HOWEVER, we can pass a copy of a pointer (e.g. a
reference to something) to mimic pass-by-reference.

- Demo pass_by.c

= Note: most lecture code will be available on the course website

47



CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher

Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;

if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;

} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
/S

\j

\

48
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Output Parameters

« Pointers can be used to “return” more than one value

from a function ain
fznt solve quadratic (double a, double b, double c, i\ soln1 5
double* solnl, double* soln?2) {
double d = b*b - 4 * a * ¢c; soln2 3
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
—~1— solve quadratic(2.0, 4.0, 0.0, &solnl, &soln2);
/S
}
N y -
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Output Parameters

CIS 3800, Fall 2023

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {
b*b - 4 * a * ¢;
) A
(-b + sqrt(d))
(-b - sqrt(d))

—+— double d
1t (d >=
*solnl
*soln?2
return 1;
} else {
return

}

I <

/
/

}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

main

soinl

soln2

solve_quad

a 2.0

b 4.0

C 0.0

solnl

d

soln2

50
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Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;
—T— if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

CIS 3800, Fall 2023

main
solnl ?
soln2 ? \
)
\
solve_quad
a 2.0
b 4.0
C 0.0
solnl e
soln2 —_
d 16.0

51
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Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
—— *s0ln2 = (-b - sqrt(d)) / (2*a);

return H
} else {
return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

main
solnl 0
soln2 ? \
)
\
solve_quad
a 2.0
b 4.0
C 0.0
solnl e
soln2 —_
d 16.0

52
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Output Parameters

« Pointers can be used to “return” more than one value

from a function ain
(int solve quadratic (double a, double b, double c, \ soln1 0.0
double* solnl, double* soln2) { :
double d = b*b - 4 * a * ¢c; soln2 2.0
if (d >= 0) { : -
*solnl = (-b + sqgrt(d)) / (2*a); | q
*soln2 = (-b - sqrt(d)) / (2%a); SOIVE_qua
— return 1; a 2.0
} else {
return 0; b 4.0
J c 0.0
}
int main(int argc, char** argv) { solnl -~
double solnl, soln2; // populated by function call soln?2
solve quadratic(2.0, 4.0, 0.0, &solnl, &soln2); T
VAR
) d 16.0

- J 53
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Output Parameters

« Pointers can be used to “return” more than one value

from a function main
fznt solve quadratic (double a, double b, double c, ‘\ soln1 0.0
double* solnl, double* soln?2) {
double d = b*b - 4 * a * c; soln2 2.0
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
L/ ...

}
\- J 54
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Arrays

X/

+ Definition: [ type name[size] |

" Allocates size*sizeof (type) bytes of contiguous memory

= Normal usage is a compile-time constant for size
(e.g. int scores[175];)

" |nitially, array values are “garbage”

+ Size of an array

" Not stored anywhere — array does not know its own size!

" The programmer will have to store the length in another variable
or hard-code it in

55
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University of Pennsylvania

USing ArraVS Optional when witializing

(
Initialization:[type name [size] = {ValO,...,valN};]

= {1} initialization can only be used at time of definition

" |If no size supplied, infers from length of array initializer

/7
0‘0

+ Array name used as identifier for “collection of data”
" name [index] specifies an element of the array and can be
used as an assignment target or as a value in an expression

@Array name (by itself) produces the address of the start of the

array
- Cannot be assigned to / changed

= {(Z, 8, &, G, ILl, 1L3}g

int primes|[6]
prines ] = 17 No TudexOutOfBound
. _ 0, h o IndexOu ounds
primes [100] 0 // memory smas Hope for seafault
56




University of Pennsylvania LOO: Intro, C Refresher

CIS 3800, Fall 2023

Multi-dimensional Arrays

+» @eneric 2D format:
type name[rows] [cols];
= Still allocates a single, contiguous chunk of memory
= Cisrow-major
" Can access elements with multiple indices
- A[O0] [1] 7;
- my int = A[1][2];

" The entries in this array are stored in memory in row major order
as follows:

-A[0][0], A[O][1], A[O][2], A[1][O], A[1][1], A[1][2]

= 2-D arrays normally only useful if size known in advance.
Otherwise use dynamically-allocated data and pointers (later)
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Arrays as Parameters

+ It's tricky to use arrays as parameters

= What happens when you use an array name as an argument?

= Arrays do not know their own size Passes n address of start of array
int sumAll (int al[]) { int sumAll (int* a) {
int i, sum = 0; int 1, sum = 0;
for (1 = 0; 1 < ...?2?2% for (1 = 0; i < ...?2?2%
} }
Equivalent

+» Note: Array syntax works on pointers
'E.g.[ptr[B] = ...; ]

58
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Solution: Pass Size as Parameter

[ int sumAll (int* a, int size) {
int i, sum = 0;
for (i = 0; 1 < size; i++) {
sum += al[i];
}

return sum;

}

\ J

« Standard idiom in C programs

59
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Strings without Objects

» Strings are central to C, very important for |/O
» In C, we don’t have Objects but we need strings

» If a string is just a sequence of characters, we can have
use array of characters as a string

» Example:
char str arr[] = "Hello World!";
char *str ptr = "Hello World!";

61
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Null Termination 70 NOT FORGET THIS. THIS IS
THE CAUSE OF MANY BUGS

+» Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
" The null terminator has value 0x00 or '\0"'
= Well formed strings MUST be null terminated

» Example:|char str[] = "Hello"; |

<@Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

address 0x2000 0x2001 0x2002 0x26003 0x2004 0x2005

Value IHI lel Ill lll IOI l\@l
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Demo: get_input.c

+ Lets code together a small program that:
= Reads at max 100 characters from stdin (user input)
" Truncates the input to only the first word
" Prints that word out

= Not allowed to use scanf, FILE*, printf, etc

CIS 3800, Fall 2023
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@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the
function signature

(#define MAX INPUT SIZE 100 A

char* read_stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

// error checking

1t (res <= 0) {
return NULL;

}

return str;
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@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the
function signature ((¢ccrine wax TNPUT sTZE 100 )

char* read_stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO,
str, MAX INPUT SIZE);

// error checking

1f (res <= 0) {
return NULL;

}

return str;
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@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function
+» What is it? How do we fix this function w/o changing the

function signature ((¢ccrine wax TNPUT sTZE 100 )
char* read stdin() {

The Stack char str[MAX INPUT SIZE];

main

ssize t res = read(STDIN FILENO,
Char* result str, MAX_INPUT_SIZE) ’

// error checking

if (res <= 0) {
return NULL;

}

return str;

___________ = 66
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@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function
+» What is it? How do we fix this function w/o changing the

function signature ((¢ccrine wax TNPUT sTZE 100 )
char* read stdin() {

The Stack char str[MAX INPUT SIZE];

main

ssize t res = read(STDIN FILENO,
Char* result str, MAX_INPUT_SIZE) ’

' // error checking
read_stdin if (res <= 0) {

return NULL;

str ['H', "i', \O'] \

return str;

7
\-
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pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the

function signature

The Stack

main

char* result

i~

PPPPPPP??

(4define MAX INPUT SIZE 100

char* read stdin ()

~

{
char str[MAX INPUT SIZE];

ssize t res

read (STDIN FILENO,
str, MAX INPUT SIZE);

// error checking

if (res <= 0) {
return NULL;

}

return str;
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static function variables

« Functions can declare a variable as static

/&include <stdio.h> // for printf ‘\
#include <stdlib.h> // for EXIT SUCCESS

This is how sowme fuvctions
(like one v pro)0) cam
int argc, char** argv) { /TGW@WW@V”+MM@S\

int next num();

int main

(
printf ("%d\n", next num()); // prints 1
printf ("$d\n", next num()); // then 2
printf ("$d\n", next num()); // then 3

return EXIT SUCCESS;
}

int next num()
// marking this variable as static means that
// the value 1s preserved between calls to the function
// this allows the function to "remember" things

static int counter = 0;
Can be thought of as a
counter++; obal bl o e
return counter; @O_a Vﬁha © ‘2‘5
“private” to a functiov

,/ 69
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+ So far, we have seen two kinds of memory allocation:

(int counter = 0; // global var 1 (int foo(int a) { b
int x = a + 1; // local var
int main () { return x;
counter++; }
printf ("count = %d\n",counter);
return 0; int main () {
) int y = foo(10); // local var
\ printf ("y = %d\n",vy):;
return 0O;
" counter is statically-allocated ) )

- Allocated when program is loaded

- Deallocated when program exits

" a, x, vy areautomatically-
allocated

« Allocated when function is called

Q‘Qﬁ Deallocated when function returns
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Aside: NULL

+» NULL is a memory location that is guaranteed to be
invalid
" |n Con Linux, NULL is 0x0 and an attempt to dereference NULL
causes a segmentation fault
% Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

<@It’s better to cause a segfault than to allow the corruption of
memory!

[ int main (int argc, char** argv) {

int* p = NULL;

*p = 1; // causes a segmentation fault
return EXIT SUCCESS;

|}
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Aside: sizeof

+» sizeof operator can be applied to a variable or a type
and it evaluates to the size of that type in bytes

+» Examples:
" sizeof (int) - returns the size of an integer

" sizeof (double) - returns the size of a double precision
number

" struct my struct s;
- sizeof (s) —returns the size of the struct s
" my type *ptr
- sizeof (*ptr) —returnsthe size of the type pointed to by ptr

+ Very useful for Dynamic Memory
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What is Dynamic Memory Allocation?

+» We want Dynamic Memory Allocation

" Dynamic means “at run-time”

" The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

= Your program explicitly requests more memory at run time
" The language allocates it at runtime, maybe with help of the OS

+» Dynamically allocated memory persists until either:
= A garbage collector collects it (automatic memory management)
" Your code explicitly deallocates it (manual memory management)

+ Crequires you to manually manage memory

® More control, and more headaches 73
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Heap API

+» Dynamic memory is managed in a location in memory
called the "Heap"
" The heap is managed by user-level runetime library (libc)
" |nterface functions found in <stdlib.h>

+» Most used functions:
" void *malloc(size t size);
- Allocates memory of specified size
" void free (void *ptr);

- Deallocates memory

+» Note: void* is “generic pointer”. It holds an address,
but doesn’t specify what it is pointing at.

+ Note 2: size tistheinteger type of sizeof ()
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malloc ()

& [void *malloc (size_tsize) ; ]

+ malloc allocates a block of memory of the requested
Size
= Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!

" You should assume that the memory initially contains garbage
= You'll typically use sizeof to calculate the size you need

N\

(// allocate a 10-float array
float* arr = malloc(l10*sizeof (float));
if (arr == NULL) { t—\\\\\\\_
return errcode; ALWAYS CHECK FOR NULL

}
// do stuff with arr
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free ()

& Usage:[free (pointer); ]

+ Deallocates the memory pointed-to by the pointer

" Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

" Freed memory becomes eligible for future allocation
8 [free (NULL) ; ] does nothing.

" The bits in the pointer are not changed by calling free
- Defensive programming: can set pointer to NULL after freeing it

N\

rfloat* arr = malloc(10*sizeof (float));
1f (arr == NULL)
return errcode;
... // do stuff with arr
free (arr);
arr = NULL; // OPTIONAL “—
\ / 76
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The Heap

o0

o0

>

o0

L)

L)

>

The Heap is a large pool of available memory to use for
Dynamic allocation

This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

malloc:

= searches for a large enough unused block of memory
" marks the memory as allocated.

= Returns a pointer to the beginning of that memory
free:

" Takes in a pointer to a previously allocated address
" Marks the memory as free to use.
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Dynamic Memory Example

.

int main ()
char* ptr
(ptr == NULL)

return EXIT FAILURE;

free (ptr);

(#include <stdlib.h>

malloc (4*sizeof (char));

// do stuff with ptr

\

J

addr

0x2001

0x4000
0x4001
0x4002

0x4003

0x4004

0x4005
0x4006

0x4007
0x4008

0x4009

CIS 3800, Fall 2023

var value
ptr ——

HEAP START USED

USED

USED

USED
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Dynamic Memory Example

(#include <stdlib.h>

int main () {
char* ptr =
1if (ptr == NULL)

return EXIT FAILURE;
// do stuff with ptr

=

free (ptr);
}

.

malloc (4*sizeof (char));

\

J

addr
O0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var

CIS 3800, Fall 2023

value

ptr

0x4002

HEAP START

USED

USED

USED

USED

USED

USED

USED

USED
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Dynamic Memory Example

>

.

int main ()
char* ptr

(#include <stdlib.h>

malloc (4*sizeof (char));

1if (ptr == NULL)
return EXIT_FAILURE;

free (ptr);

}

// do stuff with ptr

\

J

addr

0x2001

0x4000
0x4001
0x4002

0x4003

0x4004

0x4005
0x4006

0x4007
0x4008

0x4009

CIS 3800, Fall 2023

var value
ptr 0x4002
HEAP START USED
USED

USED

USED
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University of Pennsylvania

Fixed read_stdin()

(4define MAX INPUT SIZE 100

return NULL;

ssize t res = read(STDIN FILENO,

// error checking

1f (res <= 0) {
return NULL;

return str;

char* read_stdin() {
char str = (char*) malloc(sizeof (char)
1f (str == NULL) {

* MAX_ INPUT SIZE) ;

str, MAX INPUT SIZE);
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Dynamic Memory Pitfalls

@,
0‘0

)
0‘0

)
0‘0

0‘0

Buffer Overflows
= E.g.ask for 10 bytes, but write 11 bytes
® Could overwrite information needed to manage the heap

= Common when forgetting the null-terminator on malloc’d strings

Not checking for NULL

= Malloc returns NULL if out of memory
= Should check this after every call to malloc

Giving £ree () a pointer to the middle of an allocated region
" Free won’t recognize the block of memory and probably crash

Giving free() a pointer that has already been freed

= Will interfere with the management of the heap and likely crash

malloc does NOT initialize memory

" There are other functions like calloc that will zero out memory
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Memory Leaks

+» The most common Memory Pitfall

+ What happens if we malloc something, but don’t free it?

" That block of memory cannot be reallocated, even if we don’t use
it anymore, until it is £reed

= |f this happens enough, we run out of heap space and program
may slow down and eventually crash

+» Garbage Collection

= Automatically “frees” anything once the program has lost all
references to it

= Affects performance, but avoid memory leaks
® Java has this, C doesn’t
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@ Poll Everywhere pollev.com/tqm

% Which line below is first to (most likely) cause a crash?

" Yes, there are a lot of bugs, but not all cause a crash ©

" Seeif you can (#include <stdio.h> )
find all the bugs! $include <stdlib.h>

int main(int argc, char** argv) {
int al[2];
int* b = malloc(2*sizeof (int));
int* c;

Soyodkd WD R
Hh
(3]
®
®
AAAU’
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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Memory Corruption - What Happens?

main

Crash!

-———>

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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Memory Corruption - What Happens?

(#include <stdio.h> )
. #include <stdlib.h>
main
int main(int argc, char** argv) ({
a 5 int al[2];
! 5 int* b = malloc(2*sizeof (int));
LAT™ @2
?
a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
b c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;
C — free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
heag: return 0;
j&( |
r \. J

Note: Arrow points
— 7?77 to next instruction.

This “donble free”
would also canse the
memcorrupt.c program to crash
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.
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