University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Introductions, C refresher
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:
Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris
Audrey Yang Jason hom Leon Hertzberg Shyam Mehta
August Fu Jeff Yang Maxi Liu Tina Kokoshvili
Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+» How are you?

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Lecture Outline

% Introduction & Logistics
= Course Overview
= Assighments & Exams
= Policies
+» C Refresher
" Memory Layout
= Demo (make, man pages)
= Malloc, free, pointers
stdin, stdout

CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher

Instructor: Travis McGaha

» UPenn CIS faculty member since August 2021
" First Semester with CIS 3800
= CIS 2400 in 21fa & 22fa
® CIT 5950 in 22sp & 23sp

» More on my personal website:
https://www.cis.upenn.edu/~tgmcgaha/

» Schedule meeting w/ me
» Unofficial office hours right after class
+ Official office hours TBD

https://www.cis.upenn.edu/~tqmcgaha/

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

e

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

1

Memory Unit

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

Process

Operating System

Computer

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

OS does A LOT wmore

Process thav just printing,
Operating System [P reading nput, Video

display, and timer

Computer

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

THEREISALOT
GOING ON TO
Operating System SUPPOR T-H'_[S

Computer

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Overview

Operating System

Computer

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Prerequisites

+ Course Prerequisites:
= CIS 2400

" Teamwork & Willingness/happy to spend substantial time coding

+» What you should be familiar with already:
" Cprogramming
= C Memory Model
= Computer Architecture Model
= Basic UNIX command line skills

+» HWO is tuned so that it will help refresh you on these.
" But it still covers new content!

= Even if you think you know C, get started sooner rather than later. i;

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

CIS 3800 Learning Objectives

+» To leave the course with a better understanding of:
" How a computer runs/manages multiple programs
" How the previous point may affect the code we write
" How to read documentation

" Experience writing a massive programming project FROM
SCRATCH with others.

" More comfortable writing C code

+ Topics list/schedule can be found on course website

= Note: These topics may be tweaked

18

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Disclaimer

+ This is a digest, READ THE SYLLABUS

" https://www.seas.upenn.edu/~cis3800/current/documents/syllab
us

19

https://www.seas.upenn.edu/~cis3800/current/documents/syllabus
https://www.seas.upenn.edu/~cis3800/current/documents/syllabus

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Components: Textbook

+» Textbook (0)

" Textbooks recommended in pasts

- A.S. Tanenbaum. Modern Operating Systems (4th Edition onwards).
Prentice-Hall.

- W. Richard Stevens and Stephen A. Rago. Advanced Programming in
the UNIX Environment (2/e or 3/e). Addison-Wesley Professional.

= Systems for all: https://diveintosystems.org/book/
- Free online textbook, pretty well written

" Linux Man pages:
« https://linux.die.net/man/
« https://www.man7.org/linux/man-pages/

« The man command in the terminal
- DEMO:

— name a C function
— tcsetpgrp

20

https://diveintosystems.org/book/
https://linux.die.net/man/
https://www.man7.org/linux/man-pages/

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Components: Part 1

L)

>

» Lectures (~26)

" |ntroduces concepts, slides & recordings available on canvas
" |n lecture polling. Polls are not counted towards credit

% Pre-recorded videos (many)

" Entirely optional

>

" Goes over lecture material or demonstrates something for projects
% Check-ins “Quizzes” (~12)

= Unlimited attempt low-stake quizzes on canvas to make sure you
are caught up with material

>

" Lowest two are dropped

Midterms (2)

"= Two in-person exams, two pages of notes allowed
= Details TBD

D)

*

21

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Programming Facilities

» Docker
= Same environment as the autograder
" |nstructions for setup to be posted soon

» Speclab cluster, as a fallback incase Docker does not work
" |nstructions on course website

" To see status:
https://www.seas.upenn.edu/checklab/?lab=speclab

+» DO NOT use Eniac machines to develop projects
for this class!

22

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Project0 & 1

» Project O

Unix “Shell” — command interpreter (e.g. sh, bash, etc)

Excellent way to learn about how system calls are supported
and used.

Done individually
Code review
Will be posted soon!!

+ Project 1

Unix “Shell” — the real deal
Redirection, pipelines, background/foreground processing,

job control

Groups of two.

23

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

PennOS

. Best way to learn about an operating systems is to
build one.

= Build all the main features of an OS (in emulation)
» Groups of 4.

» By the end of the project, you will:

= |Learn about how different subsystems in Unix interact with
each other

= | earn about priority scheduling, file systems, user shell
Interactions

= Become a really good and confident systems programmer

24

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

PennOS

+» There Is a paper on this:
http://netdb.cis.upenn.edu/papers/pennos.pdf at an
ACM OS journal.

+» Group evaluation done by the end of semester. Team
member with lower than15% contribution to the group
will get grade downgrade.

25

http://netdb.cis.upenn.edu/papers/pennos.pdf

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

HW Policies

. Students who did not contribute to group

projects will get F grade regardless of overall
score.

» Late Policy
" You are given 5 late tokens.

"= Tokens are counted per student and can only be used on some
assignments.

" Two tokens used at max per assignment
= Each token grants 48 hours of extra time

" |f there are extenuating circumstances, please let me know

26

CIS 3800, Fall 2023

LOO: Intro, C Refresher

University of Pennsylvania

Collaboration Policy Violation

+» You will be caught:
= Careful grading of all written homeworks by teaching staff

" Measure of Software Similarity (MOSS):
http://theory.stanford.edu/~aiken/moss/

= Successfully used in several classes at Penn

» Zero in assignment, zero for class participation (3%). F

grade if caught twice.
" First-time offenders will be reported to Office of Student Conduct
with no exceptions. Possible suspension from school

" Your friend from last semester who gave the code will have their
grade retrospectively downgraded.

27

http://theory.stanford.edu/~aiken/moss/

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Collaboration Policy Violation

<« @Generative Al

= | am skeptical of its usefulness for your learning and for your
success in the course

= Some articles on the topic:
« https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but

« https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

= Not banned, but not recommended. Use your best judgement.

+» You will not help your overall grade and happiness:

" Quizzed individually during project demo, exams on project in
finals

" |f you can’t explain your code in OH, we can turn you away.
- This is different than being confused on a bug or with C, this is ok

= Personal lifelong satisfaction from completing PennQOS

28

https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but
https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Course Grading

» Breakdown:
= Project O penn-shredder: (8%)
" Project 1 penn-shell: (18%)
= Project 2 PennOS: (37%)
" Exams (34%)
- 17% each
" Check-in Quizzes(3%)

+ Final Grade Calculations:
= | would LOVE to give everyone an A+ if it is earned

" Final grade cut-offs will be decided privately at the end of the
Semester. What is used in previous semester is in the syllabus

29

University of Pennsylvania LOO: Intro, C Refresher

Course Infrastructure

% Course Website: www.seas.upenn.edu/~cis3800/23fa/
= Materials, Schedule, Syllabus ...

» Docker or Speclab
" Coding environment for hw's

» Gradescope
= Used for HW Submissions

» Poll Everywhere
= Used for lecture polls

« Ed Discussion
® Course discussion board

CIS 3800, Fall 2023

30

University of Pennsylvania LOO: Intro, C Refresher

Getting Help

« Ed

" Announcements will be made through here

= Ask and answer questions

= Sign up if you haven’t already!

« Office Hours:

= Can be found on calendar on front page of course website
= Starts next week for all TAs

« 1-on-1’s:
® Can schedule 1-on-1’s with Travis

= Should attend OH and use Ed when possible, but this is an option
for when OH and Ed can’t meet your needs

CIS 3800, Fall 2023

31

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

We Care

» | am still figuring things out, but we do care about you and
your experience with the course

= Please reach out to course staff if something comes up and you
need help

» PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

" We know that things can be tough, but please reach out if you
feel tempted. We want to help

= Read more on academic integrity in the syllabus

32

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+ Any questions, comments or concerns so far?

33

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Lecture Outline

% Introduction & Logistics
" Course Overview

" Assignments & Exams]]
| Will go through parts of this

= Policies .
relatively fast.

+ Crefresher

= Pointers Review this on your own

" Arrays

34

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Hello World in C

35

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Hello World: read()

36

University of Pennsylvania LOO: Intro, C Refresher

CIS 3800, Fall 2023

Aside: Memory

+ Where all data, code, etc are
stored for a program

+» Broken up into several
segments:
" The stack
" The heap
" The kernel
" Etc.

+ Each “unit” of memory has an
address

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

37

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

POINTERS ARE EXTREMELY
IMPORTANT INC

« Variables that store addresses

" |t stores the address to somewhere in memory

Pointers

= Must specify a type so the data at that address can be interpreted

equivalent

» Generic definition:{ type* name; |or|type *name; |

" Example:| 1nt *ptr;]

« Declares a variable that can contain an address

- Trying to access that data at that address will treat the data there as
anint

38

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Operators

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
" Can be used to read or write the memory at the address

" Example: [int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

« Get the address of a variable with &

= &foo getsthe address of foo in memory

" Example: [int a = 595;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

39

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

TIuitial values

Pointer Example
are garbage

|
(int main (int argc, char** argv) ({) O0x2001 a -—
int a, b, c; | | | 0x2002 | b __
int* ptr; // ptr is a pointer to an int
0x2003 c Sk
a = 5; -
b = 3; 0x2004 | ptr
ptr = &a;
*ptr = 7;
c = a + Db;
return O;
}
_ J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

40

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Example

(int main (int argc, char** argv) ({) O0x2001 a

int a, b, ¢; | | | 0x2002 | b

int* ptr; // ptr is a pointer to an int

0x2003 o] ——

— a = 5; -
. b < 3, 0x2004 | ptr

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

41

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Example

(" int main (int argc, char** argv) ({ Y\ 0x2001] a 5
e B0 e , | | 0x2002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003| e ——
S 0x2004 | ptr | 0x2001
+— ptr = &a;
*ptr = /5
c =a + b;
return 0O;
}

- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

42

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Example

(int main (int argc, char** argv) ({) O0x2001 a 7
e By ey | | | 022002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003| e ——
S 0x2004 | ptr | 0x2001
ptr = &a;

+— *ptr = 7;
c =a + b;

return 0;

}
- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

43

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Pointer Example

(int main (int argc, char** argv) ({) 0x2001 a 7
e Eg g S | | | 022002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003 | e 10
S 0x2004 | ptr | 0x2001
ptr = &a;
*ptr = /5

T— ¢c = a + b;
return O;

}

- J

Assuiming that inteaers and pointers
each i+ into a siwgle memory location

44

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

pollev.com/tqm

@ Poll Everywhere

+» What does this code print?

(#include <stdio.h>)
#include <stdlib.h>
void modify int(int x) {
X = 55
}
int main () {
int num = 3;
modify int (num) ;
printf ("%d\n", num);
return EXIT SUCCESS;
}
_ J

45

University of Pennsylvania

@ Poll Everywhere

+» What does this code print?

+» How could we fix it?
E.g. make modify point
actually modify a point

LOO: Intro, C Refresher

pollev.com/tqm

/ginclude <stdio.h>
#include <stdlib.h>

typedef struct point st {
int x, y;
} Point;

void modify point (Point p) {
p.x = 3800;
p.y = 4710

}

int main() {
Point p = {1100,
modify point(p);
printf ("%d, %d\n", p.x,
return EXIT SUCCESS;

2400} ;

P.Y);

\j

46

CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Demo: pass_by.c

» Everything in Cis pass-by value (e.g. a copy is passed to
the function)

» HOWEVER, we can pass a copy of a pointer (e.g. a
reference to something) to mimic pass-by-reference.

- Demo pass_by.c

= Note: most lecture code will be available on the course website

47

CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher

Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;

if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;

} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
/S

\j

\

48

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Output Parameters

« Pointers can be used to “return” more than one value

from a function ain
fznt solve quadratic (double a, double b, double c, i\ soln1 5
double* solnl, double* soln?2) {
double d = b*b - 4 * a * ¢c; soln2 3
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
—~1— solve quadratic(2.0, 4.0, 0.0, &solnl, &soln2);
/S
}
N y -

University of Pennsylvania

LOO: Intro, C Refresher

Output Parameters

CIS 3800, Fall 2023

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {
b*b - 4 * a * ¢;
) A
(-b + sqrt(d))
(-b - sqrt(d))

—+— double d
1t (d >=
*solnl
*soln?2
return 1;
} else {
return

}

I <

/
/

}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

main

soinl

soln2

solve_quad

a 2.0

b 4.0

C 0.0

solnl

d

soln2

50

University of Pennsylvania LOO: Intro, C Refresher

Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;
—T— if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

CIS 3800, Fall 2023

main
solnl ?
soln2 ? \
)
\
solve_quad
a 2.0
b 4.0
C 0.0
solnl e
soln2 —_
d 16.0

51

University of Pennsylvania LOO: Intro, C Refresher

CIS 3800, Fall 2023

Output Parameters

« Pointers can be used to “return” more than one value

from a function

fznt solve quadratic (double a, double b, double c,
double* solnl, double* soln?2) {

double d = b*b - 4 * a * ¢c;
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
—— *s0ln2 = (-b - sqrt(d)) / (2*a);

return H
} else {
return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
V2R

)
.

\

main
solnl 0
soln2 ? \
)
\
solve_quad
a 2.0
b 4.0
C 0.0
solnl e
soln2 —_
d 16.0

52

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Output Parameters

« Pointers can be used to “return” more than one value

from a function ain
(int solve quadratic (double a, double b, double c, \ soln1 0.0
double* solnl, double* soln2) { :
double d = b*b - 4 * a * ¢c; soln2 2.0
if (d >= 0) { : -
*solnl = (-b + sqgrt(d)) / (2*a); | q
*soln2 = (-b - sqrt(d)) / (2%a); SOIVE_qua
— return 1; a 2.0
} else {
return 0; b 4.0
J c 0.0
}
int main(int argc, char** argv) { solnl -~
double solnl, soln2; // populated by function call soln?2
solve quadratic(2.0, 4.0, 0.0, &solnl, &soln2); T
VAR
) d 16.0

- J 53

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Output Parameters

« Pointers can be used to “return” more than one value

from a function main
fznt solve quadratic (double a, double b, double c, ‘\ soln1 0.0
double* solnl, double* soln?2) {
double d = b*b - 4 * a * c; soln2 2.0
if (d >= 0) {
*solnl = (-b + sqrt(d)) / (2*a);
*soln2 = (-b - sqrt(d)) / (2*a);
return 1;
} else {

return 0;

}
}

int main(int argc, char** argv) {
double solnl, soln2; // populated by function call
solve quadratic (2.0, 4.0, 0.0, &solnl, &soln2);
L/ ...

}
\- J 54

University of Pennsylvania

LOO: Intro, C Refresher

CIS 3800, Fall 2023

Arrays

X/

+ Definition: [type name[size] |

" Allocates size*sizeof (type) bytes of contiguous memory

= Normal usage is a compile-time constant for size
(e.g. int scores[175];)

" |nitially, array values are “garbage”

+ Size of an array

" Not stored anywhere — array does not know its own size!

" The programmer will have to store the length in another variable
or hard-code it in

55

LOO: Intro, C Refresher CIS 3800, Fall 2023

University of Pennsylvania

USing ArraVS Optional when witializing

(
Initialization:[type name [size] = {ValO,...,valN};]

= {1} initialization can only be used at time of definition

" |If no size supplied, infers from length of array initializer

/7
0‘0

+ Array name used as identifier for “collection of data”
" name [index] specifies an element of the array and can be
used as an assignment target or as a value in an expression

@Array name (by itself) produces the address of the start of the

array
- Cannot be assigned to / changed

= {(Z, 8, &, G, ILl, 1L3}g

int primes|[6]
prines] = 17 No TudexOutOfBound
. _ 0, h o IndexOu ounds
primes [100] 0 // memory smas Hope for seafault
56

University of Pennsylvania LOO: Intro, C Refresher

CIS 3800, Fall 2023

Multi-dimensional Arrays

+» @eneric 2D format:
type name[rows] [cols];
= Still allocates a single, contiguous chunk of memory
= Cisrow-major
" Can access elements with multiple indices
- A[O0] [1] 7;
- my int = A[1][2];

" The entries in this array are stored in memory in row major order
as follows:

-A[0][0], A[O][1], A[O][2], A[1][O], A[1][1], A[1][2]

= 2-D arrays normally only useful if size known in advance.
Otherwise use dynamically-allocated data and pointers (later)

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Arrays as Parameters

+ It's tricky to use arrays as parameters

= What happens when you use an array name as an argument?

= Arrays do not know their own size Passes n address of start of array
int sumAll (int al[]) { int sumAll (int* a) {
int i, sum = 0; int 1, sum = 0;
for (1 = 0; 1 < ...?2?2% for (1 = 0; i < ...?2?2%
} }
Equivalent

+» Note: Array syntax works on pointers
'E.g.[ptr[B] = ...;]

58

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Solution: Pass Size as Parameter

[int sumAll (int* a, int size) {
int i, sum = 0;
for (i = 0; 1 < size; i++) {
sum += al[i];
}

return sum;

}

\ J

« Standard idiom in C programs

59

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Strings without Objects

» Strings are central to C, very important for |/O
» In C, we don’t have Objects but we need strings

» If a string is just a sequence of characters, we can have
use array of characters as a string

» Example:
char str arr[] = "Hello World!";
char *str ptr = "Hello World!";

61

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Null Termination 70 NOT FORGET THIS. THIS IS
THE CAUSE OF MANY BUGS

+» Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
" The null terminator has value 0x00 or '\0"'
= Well formed strings MUST be null terminated

» Example:|char str[] = "Hello"; |

<@Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

address 0x2000 0x2001 0x2002 0x26003 0x2004 0x2005

Value IHI lel Ill lll IOI l\@l

62

University of Pennsylvania LOO: Intro, C Refresher

Demo: get_input.c

+ Lets code together a small program that:
= Reads at max 100 characters from stdin (user input)
" Truncates the input to only the first word
" Prints that word out

= Not allowed to use scanf, FILE*, printf, etc

CIS 3800, Fall 2023

63

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the
function signature

(#define MAX INPUT SIZE 100 A

char* read_stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

// error checking

1t (res <= 0) {
return NULL;

}

return str;

64

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the
function signature ((¢ccrine wax TNPUT sTZE 100)

char* read_stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO,
str, MAX INPUT SIZE);

// error checking

1f (res <= 0) {
return NULL;

}

return str;

65

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function
+» What is it? How do we fix this function w/o changing the

function signature ((¢ccrine wax TNPUT sTZE 100)
char* read stdin() {

The Stack char str[MAX INPUT SIZE];

main

ssize t res = read(STDIN FILENO,
Char* result str, MAX_INPUT_SIZE) ’

// error checking

if (res <= 0) {
return NULL;

}

return str;

___________ = 66

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+» There is something wrong with this function
+» What is it? How do we fix this function w/o changing the

function signature ((¢ccrine wax TNPUT sTZE 100)
char* read stdin() {

The Stack char str[MAX INPUT SIZE];

main

ssize t res = read(STDIN FILENO,
Char* result str, MAX_INPUT_SIZE) ’

' // error checking
read_stdin if (res <= 0) {

return NULL;

str ['H', "i', \O'] \

return str;

7
\-

——————————— - 67

University of Pennsylvania

@ Poll Everywhere

LOO: Intro, C Refresher

CIS 3800, Fall 2023

pollev.com/tqm

+» There is something wrong with this function

+» What is it? How do we fix this function w/o changing the

function signature

The Stack

main

char* result

i~

PPPPPPP??

(4define MAX INPUT SIZE 100

char* read stdin ()

~

{
char str[MAX INPUT SIZE];

ssize t res

read (STDIN FILENO,
str, MAX INPUT SIZE);

// error checking

if (res <= 0) {
return NULL;

}

return str;

68

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

static function variables

« Functions can declare a variable as static

/&include <stdio.h> // for printf ‘\
#include <stdlib.h> // for EXIT SUCCESS

This is how sowme fuvctions
(like one v pro)0) cam
int argc, char** argv) { /TGW@WW@V”+MM@S\

int next num();

int main

(
printf ("%d\n", next num()); // prints 1
printf ("$d\n", next num()); // then 2
printf ("$d\n", next num()); // then 3

return EXIT SUCCESS;
}

int next num()
// marking this variable as static means that
// the value 1s preserved between calls to the function
// this allows the function to "remember" things

static int counter = 0;
Can be thought of as a
counter++; obal bl o e
return counter; @O_a Vﬁha © ‘2‘5
“private” to a functiov

,/ 69

University of Pennsylvania

Memory Allocation

LOO: Intro, C Refresher

CIS 3800, Fall 2023

+ So far, we have seen two kinds of memory allocation:

(int counter = 0; // global var 1 (int foo(int a) { b
int x = a + 1; // local var
int main () { return x;
counter++; }
printf ("count = %d\n",counter);
return 0; int main () {
) int y = foo(10); // local var
\ printf ("y = %d\n",vy):;
return 0O;
" counter is statically-allocated))

- Allocated when program is loaded

- Deallocated when program exits

" a, x, vy areautomatically-
allocated

« Allocated when function is called

Q‘Qﬁ Deallocated when function returns

70

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Aside: NULL

+» NULL is a memory location that is guaranteed to be
invalid
" |n Con Linux, NULL is 0x0 and an attempt to dereference NULL
causes a segmentation fault
% Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

<@It’s better to cause a segfault than to allow the corruption of
memory!

[int main (int argc, char** argv) {

int* p = NULL;

*p = 1; // causes a segmentation fault
return EXIT SUCCESS;

|}

71

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Aside: sizeof

+» sizeof operator can be applied to a variable or a type
and it evaluates to the size of that type in bytes

+» Examples:
" sizeof (int) - returns the size of an integer

" sizeof (double) - returns the size of a double precision
number

" struct my struct s;
- sizeof (s) —returns the size of the struct s
" my type *ptr
- sizeof (*ptr) —returnsthe size of the type pointed to by ptr

+ Very useful for Dynamic Memory

72

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

What is Dynamic Memory Allocation?

+» We want Dynamic Memory Allocation

" Dynamic means “at run-time”

" The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

= Your program explicitly requests more memory at run time
" The language allocates it at runtime, maybe with help of the OS

+» Dynamically allocated memory persists until either:
= A garbage collector collects it (automatic memory management)
" Your code explicitly deallocates it (manual memory management)

+ Crequires you to manually manage memory

® More control, and more headaches 73

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Heap API

+» Dynamic memory is managed in a location in memory
called the "Heap"
" The heap is managed by user-level runetime library (libc)
" |nterface functions found in <stdlib.h>

+» Most used functions:
" void *malloc(size t size);
- Allocates memory of specified size
" void free (void *ptr);

- Deallocates memory

+» Note: void* is “generic pointer”. It holds an address,
but doesn’t specify what it is pointing at.

+ Note 2: size tistheinteger type of sizeof ()

74

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

malloc ()

& [void *malloc (size_tsize) ;]

+ malloc allocates a block of memory of the requested
Size
= Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!

" You should assume that the memory initially contains garbage
= You'll typically use sizeof to calculate the size you need

N\

(// allocate a 10-float array
float* arr = malloc(l10*sizeof (float));
if (arr == NULL) { t—_
return errcode; ALWAYS CHECK FOR NULL

}
// do stuff with arr

75

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

free ()

& Usage:[free (pointer);]

+ Deallocates the memory pointed-to by the pointer

" Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

" Freed memory becomes eligible for future allocation
8 [free (NULL) ;] does nothing.

" The bits in the pointer are not changed by calling free
- Defensive programming: can set pointer to NULL after freeing it

N\

rfloat* arr = malloc(10*sizeof (float));
1f (arr == NULL)
return errcode;
... // do stuff with arr
free (arr);
arr = NULL; // OPTIONAL “—
\ / 76

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

The Heap

o0

o0

>

o0

L)

L)

>

The Heap is a large pool of available memory to use for
Dynamic allocation

This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

malloc:

= searches for a large enough unused block of memory
" marks the memory as allocated.

= Returns a pointer to the beginning of that memory
free:

" Takes in a pointer to a previously allocated address
" Marks the memory as free to use.

77

University of Pennsylvania

LOO: Intro, C Refresher

Dynamic Memory Example

.

int main ()
char* ptr
(ptr == NULL)

return EXIT FAILURE;

free (ptr);

(#include <stdlib.h>

malloc (4*sizeof (char));

// do stuff with ptr

\

J

addr

0x2001

0x4000
0x4001
0x4002

0x4003

0x4004

0x4005
0x4006

0x4007
0x4008

0x4009

CIS 3800, Fall 2023

var value
ptr ——

HEAP START USED

USED

USED

USED

78

University of Pennsylvania

LOO: Intro, C Refresher

Dynamic Memory Example

(#include <stdlib.h>

int main () {
char* ptr =
1if (ptr == NULL)

return EXIT FAILURE;
// do stuff with ptr

=

free (ptr);
}

.

malloc (4*sizeof (char));

\

J

addr
O0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var

CIS 3800, Fall 2023

value

ptr

0x4002

HEAP START

USED

USED

USED

USED

USED

USED

USED

USED

79

University of Pennsylvania

LOO: Intro, C Refresher

Dynamic Memory Example

>

.

int main ()
char* ptr

(#include <stdlib.h>

malloc (4*sizeof (char));

1if (ptr == NULL)
return EXIT_FAILURE;

free (ptr);

}

// do stuff with ptr

\

J

addr

0x2001

0x4000
0x4001
0x4002

0x4003

0x4004

0x4005
0x4006

0x4007
0x4008

0x4009

CIS 3800, Fall 2023

var value
ptr 0x4002
HEAP START USED
USED

USED

USED

80

LOO: Intro, C Refresher

CIS 3800, Fall 2023

University of Pennsylvania

Fixed read_stdin()

(4define MAX INPUT SIZE 100

return NULL;

ssize t res = read(STDIN FILENO,

// error checking

1f (res <= 0) {
return NULL;

return str;

char* read_stdin() {
char str = (char*) malloc(sizeof (char)
1f (str == NULL) {

* MAX_ INPUT SIZE) ;

str, MAX INPUT SIZE);

81

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Dynamic Memory Pitfalls

@,
0‘0

)
0‘0

)
0‘0

0‘0

Buffer Overflows
= E.g.ask for 10 bytes, but write 11 bytes
® Could overwrite information needed to manage the heap

= Common when forgetting the null-terminator on malloc’d strings

Not checking for NULL

= Malloc returns NULL if out of memory
= Should check this after every call to malloc

Giving £ree () a pointer to the middle of an allocated region
" Free won’t recognize the block of memory and probably crash

Giving free() a pointer that has already been freed

= Will interfere with the management of the heap and likely crash

malloc does NOT initialize memory

" There are other functions like calloc that will zero out memory

82

University of Pennsylvania

LOO: Intro, C Refresher

CIS 3800, Fall 2023

Memory Leaks

+» The most common Memory Pitfall

+ What happens if we malloc something, but don’t free it?

" That block of memory cannot be reallocated, even if we don’t use
it anymore, until it is £reed

= |f this happens enough, we run out of heap space and program
may slow down and eventually crash

+» Garbage Collection

= Automatically “frees” anything once the program has lost all
references to it

= Affects performance, but avoid memory leaks
® Java has this, C doesn’t

83

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

% Which line below is first to (most likely) cause a crash?

" Yes, there are a lot of bugs, but not all cause a crash ©

" Seeif you can (#include <stdio.h>)
find all the bugs! $include <stdlib.h>

int main(int argc, char** argv) {
int al[2];
int* b = malloc(2*sizeof (int));
int* c;

Soyodkd WD R
Hh
(3]
®
®
AAAU’

84

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

Crash!

-———>

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania LOO: Intro, C Refresher CIS 3800, Fall 2023

Memory Corruption - What Happens?

(#include <stdio.h>)
. #include <stdlib.h>
main
int main(int argc, char** argv) ({
a 5 int al[2];
! 5 int* b = malloc(2*sizeof (int));
LAT™ @2
?
a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
b c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;
C — free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
heag: return 0;
j&(|
r \. J

Note: Arrow points
— 7?77 to next instruction.

This “donble free”
would also canse the
memcorrupt.c program to crash

91

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

University of Pennsylvania

LOO: Intro, C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 77?7

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

a[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023

	Default Section
	Slide 1: Introductions, C refresher Computer Operating Systems, Fall 2023
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Instructor: Travis McGaha
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Prerequisites
	Slide 18: CIS 3800 Learning Objectives
	Slide 19: Disclaimer
	Slide 20: Course Components: Textbook
	Slide 21: Course Components: Part 1
	Slide 22: Programming Facilities
	Slide 23: Project 0 & 1
	Slide 24: PennOS
	Slide 25: PennOS
	Slide 26: HW Policies
	Slide 27: Collaboration Policy Violation
	Slide 28: Collaboration Policy Violation
	Slide 29: Course Grading
	Slide 30: Course Infrastructure
	Slide 31: Getting Help
	Slide 32: We Care
	Slide 33: Poll: how are you?
	Slide 34: Lecture Outline
	Slide 35: Hello World in C
	Slide 36: Hello World: read()
	Slide 37: Aside: Memory
	Slide 38: Pointers
	Slide 39: Pointer Operators
	Slide 40: Pointer Example
	Slide 41: Pointer Example
	Slide 42: Pointer Example
	Slide 43: Pointer Example
	Slide 44: Pointer Example
	Slide 45: Poll: how are you?
	Slide 46: Poll: how are you?
	Slide 47: Demo: pass_by.c
	Slide 48: Output Parameters
	Slide 49: Output Parameters
	Slide 50: Output Parameters
	Slide 51: Output Parameters
	Slide 52: Output Parameters
	Slide 53: Output Parameters
	Slide 54: Output Parameters
	Slide 55: Arrays
	Slide 56: Using Arrays
	Slide 57: Multi-dimensional Arrays
	Slide 58: Arrays as Parameters
	Slide 59: Solution: Pass Size as Parameter
	Slide 61: Strings without Objects
	Slide 62: Null Termination
	Slide 63: Demo: get_input.c
	Slide 64: Demo: get_input.c
	Slide 65: Demo: get_input.c
	Slide 66: Demo: get_input.c
	Slide 67: Demo: get_input.c
	Slide 68: Demo: get_input.c
	Slide 69: static function variables
	Slide 70: Memory Allocation
	Slide 71: Aside: NULL
	Slide 72: Aside: sizeof
	Slide 73: What is Dynamic Memory Allocation?
	Slide 74: Heap API
	Slide 75: malloc()
	Slide 76: free()
	Slide 77: The Heap
	Slide 78: Dynamic Memory Example
	Slide 79: Dynamic Memory Example
	Slide 80: Dynamic Memory Example
	Slide 81: Fixed read_stdin()
	Slide 82: Dynamic Memory Pitfalls
	Slide 83: Memory Leaks
	Slide 84: Practice Question
	Slide 85: Memory Corruption - What Happens?
	Slide 86: Memory Corruption - What Happens?
	Slide 87: Memory Corruption - What Happens?
	Slide 88: Memory Corruption - What Happens?
	Slide 89: Memory Corruption - What Happens?
	Slide 90: Memory Corruption - What Happens?
	Slide 91: Memory Corruption - What Happens?
	Slide 92: Memory Corruption - What Happens?
	Slide 93: Memory Corruption - What Happens?

