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Poll: how are you?

❖ How are you?
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Administrivia

❖ Proj0 (penn-shredder) to be released soon (if not already)

▪ This includes git & docker setup instructions. Do this part ASAP, it 
can take a while to debug issues with setup

▪ This assignment is done on your own

❖ Check-in Quiz 0 to be released tonight or tomorrow

▪ “Due” before lecture on Tuesday

▪ Will keep open for a bit longer than that, to account for students 
joining the course a bit late
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Poll: how are you?

❖ Any questions, comments or concerns?
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Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()
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Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B.   ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

7

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm
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Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient  for a useful system: 
Difficult to react to changes in system state 

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts 

• Change in control flow in response to a system event 
(i.e.,  change in system state)

• Implemented using combination of hardware and OS software
 

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software 

What we will be looking at today

For next lecture
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Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()
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Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next
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0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a 
unique number k

❖ k = index into table 
(a.k.a. interrupt vector)

❖ Handler k is called each time 
interrupt k occurs

Interrupt
Table

Code for  
interrupt handler 0

Code for 
interrupt handler 1

Code for
interrupt handler 2

Code for 
interrupt handler n-1

...

Interrupt
Numbres
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Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪  I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk
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Synchronous Interrupts
❖ Caused by events that occur as a result of executing an 

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable 

• Examples: page faults (recoverable), protection faults 
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t 

fully agreed upon. Many people may use these 

interchangeably
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Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()
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Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

16

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture



CIS 3800, Fall 2023L01:  Processes, fork(), exec(), exit()University of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, 
CMOS, gates, etc.

❖ Once we got to programming, our computer looks 
something like:

❖ This model is still useful, and can be
used in many settings

17

Computer

Operating System

Process
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Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

18

Computer

Operating System

P1 P2 P3 Pn…
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OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of 

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between 
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU
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Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…



CIS 3800, Fall 2023L01:  Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack
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Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…



CIS 3800, Fall 2023L01:  Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate 
process

• Scheduling of processors onto 
cores done by kernel

▪ This is called “Parallelism”

CPU
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Memory
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Any questions so far?

❖ What I just went through was the big picture of processes. 
Many details left, some will be gone over in future 
lectures

❖ Any questions, comments or concerns so far?

26
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Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be 
scheduled (i.e., chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently 

More states in 

future lectures

Scheduler to be covered 

in a later lecture
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Process State Lifetime (incomplete)
More states in 

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to 

stop running. Through something 

like a hardware timer interrupt
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Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs 
as part of some existing process.

❖ Control flow passes from one process to another via a 
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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OS: The Scheduler

❖ When switching between processes, the OS will run 

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

30
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Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide 

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as 
non-deterministic, details handled by the OS.

31
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Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

32
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Terminating Processes 

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next 
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an 
integer value from the main routine

❖ exit is called once but never returns.
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Creating New Processes

❖  

▪ Creates a new process (the “child”) that is an exact clone* of the 
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the 
parent

▪ Returns a pid_t which is an integer type.

34

pid_t fork();
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fork() and Address Spaces

❖ Fork causes the OS
to clone the 
address space
▪ The copies of the 

memory segments are 
(nearly) identical

▪ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.

35

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

36

parent

OS

fork()
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

37

parent child

OS

clone
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

38

parent child

OS

child pid 0
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"simple" fork() example

❖ What does this print?

39

fork();

printf("Hello!\n");
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"simple" fork() example

❖ What does this print?

40

int x = 3;

fork();

x++;

printf("%d\n", x);
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fork() example

41

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}
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fork() example

42

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)
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fork() example

43

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic
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Another fork() example

44

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);
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Another fork() example

45

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);



CIS 3800, Fall 2023L01:  Processes, fork(), exec(), exit()University of Pennsylvania

Another fork() example

46

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!
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Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

47
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exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the 
specified program can run

48
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execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of 
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is 
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

49

int execve(const char *file,

    char* const argv[]

    char* const envp[]);
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Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

50

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following 
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following 
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers
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Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

51
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Any questions so far?

52

pollev.com/tqm

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

broken_autograder.c
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