
CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

The OS, Processes, fork() & exec()
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Administrivia

❖ Proj0 (penn-shredder) to be released soon (if not already)

▪ This includes git & docker setup instructions. Do this part ASAP, it
can take a while to debug issues with setup

▪ This assignment is done on your own

❖ Check-in Quiz 0 to be released tonight or tomorrow

▪ “Due” before lecture on Tuesday

▪ Will keep open for a bit longer than that, to account for students
joining the course a bit late

3

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns?

4

pollev.com/tqm

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

5

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B. ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

7

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

What we will be looking at today

For next lecture

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

10

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a
unique number k

❖ k = index into table
(a.k.a. interrupt vector)

❖ Handler k is called each time
interrupt k occurs

Interrupt
Table

Code for
interrupt handler 0

Code for
interrupt handler 1

Code for
interrupt handler 2

Code for
interrupt handler n-1

...

Interrupt
Numbres

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Synchronous Interrupts
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable

• Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t

fully agreed upon. Many people may use these

interchangeably

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

15

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

16

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors,
CMOS, gates, etc.

❖ Once we got to programming, our computer looks
something like:

❖ This model is still useful, and can be
used in many settings

17

Computer

Operating System

Process

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

18

Computer

Operating System

P1 P2 P3 Pn…

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

19

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Any questions so far?

❖ What I just went through was the big picture of processes.
Many details left, some will be gone over in future
lectures

❖ Any questions, comments or concerns so far?

26

pollev.com/tqm

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be
scheduled (i.e., chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently

More states in

future lectures

Scheduler to be covered

in a later lecture

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Process State Lifetime (incomplete)
More states in

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to

stop running. Through something

like a hardware timer interrupt

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs
as part of some existing process.

❖ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

30

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as
non-deterministic, details handled by the OS.

31

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

32

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an
integer value from the main routine

❖ exit is called once but never returns.

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

▪ Returns a pid_t which is an integer type.

34

pid_t fork();

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

35

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

36

parent

OS

fork()

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

37

parent child

OS

clone

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

38

parent child

OS

child pid 0

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

"simple" fork() example

❖ What does this print?

39

fork();

printf("Hello!\n");

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

"simple" fork() example

❖ What does this print?

40

int x = 3;

fork();

x++;

printf("%d\n", x);

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork() example

41

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork() example

42

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

fork() example

43

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Another fork() example

44

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Another fork() example

45

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Another fork() example

46

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Interrupts

❖ Processes

❖ fork()

❖ exec()

47

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

48

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

49

int execve(const char *file,

 char* const argv[]

 char* const envp[]);

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

50

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

51

CIS 3800, Fall 2023L01: Processes, fork(), exec(), exit()University of Pennsylvania

Any questions so far?

52

pollev.com/tqm

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

broken_autograder.c

	Default Section
	Slide 1: The OS, Processes, fork() & exec() Computer Operating Systems, Fall 2023
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Control Flow
	Slide 7
	Slide 8: Altering the Control Flow
	Slide 9: Exceptional Control Flow
	Slide 10: Lecture Outline
	Slide 11: Interrupts
	Slide 12: Interrupt Tables
	Slide 13: Asynchronous Interrupts
	Slide 14: Synchronous Interrupts
	Slide 15: Lecture Outline
	Slide 16: Definition: Process
	Slide 17: Computers as we know them now
	Slide 18: Multiple Processes
	Slide 19: OS: Protection System
	Slide 20: Multiprocessing: The Illusion
	Slide 21: Multiprocessing: The (Traditional) Reality
	Slide 22: Multiprocessing: The (Traditional) Reality
	Slide 23: Multiprocessing: The (Traditional) Reality
	Slide 24: Multiprocessing: The (Traditional) Reality
	Slide 25: Multiprocessing: The (Modern) Reality
	Slide 26: Any questions so far?
	Slide 27: Process States (incomplete)
	Slide 28: Process State Lifetime (incomplete)
	Slide 29: Context Switching
	Slide 30: OS: The Scheduler
	Slide 31: Scheduler Considerations
	Slide 32: Lecture Outline
	Slide 33: Terminating Processes
	Slide 34: Creating New Processes
	Slide 35: fork() and Address Spaces
	Slide 36: fork()
	Slide 37: fork()
	Slide 38: fork()
	Slide 39: "simple" fork() example
	Slide 40: "simple" fork() example
	Slide 41: fork() example
	Slide 42: fork() example
	Slide 43: fork() example
	Slide 44: Another fork() example
	Slide 45: Another fork() example
	Slide 46: Another fork() example
	Slide 47: Lecture Outline
	Slide 48: exec*()
	Slide 49: execve()
	Slide 50: Exec Visualization
	Slide 51: Exec Demo
	Slide 52: Any questions so far?

