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Administrivia

❖ Proj0 (penn-shredder) Due 09/13 @ 11:59 pm

▪ This includes git & docker setup instructions. Do this part ASAP, it 
can take a while to debug issues with setup

▪ This assignment is done on your own

❖ Check-in Quiz 0 Due before this lecture

▪ Still open, to account for students joining the course a bit late

▪ Don’t expect this to be true with future quizzes

❖ Check-in Quiz 1 Due in ~1 week

2
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Administrivia

❖ Optional Recitations!

▪ We are going to try having optional recitations

▪ First one is today after lecture from 3:30 to 4:30

▪ On zoom and Moore 100C

▪ This one is about C refresher including valgrind & GDB

▪ Materials will be shared afterwards

▪ Will it always be this time slot? idk, TBD

▪ Will we have one every week? Probably not, TBD

3
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture or 
the check-in Quiz?

4

Discuss
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Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume 
functions don’t fail

5

Discuss

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"/bin/echo",

                    "hello",

                    NULL};

    execve(argv[0], argv, envp);

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    return EXIT_SUCCESS;

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}
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Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

6
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From last time:

7

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

broken_autograder.c

ALWAYS
     ^
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“waiting” for updates on a Process

❖  

▪ Calling process waits for any child process to change status

• Also cleans up the child process if it was a zombie/terminated

▪ Gets the exit status of child process through output parameter 
wstatus

▪ Returns process ID of child who was waited for or -1 on error

8

pid_t wait(int *wstatus);
Usual change in status 

is to “terminated”
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Execution Blocking 

❖ When a process calls wait() and there is a process to 
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for 
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

9
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Fixed code from last lecture

10

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  wait(); // should error check, not enough slide space :(

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

} autograder.c
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Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

11

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits
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Poll: how are you?

❖ Can child finish before parent calls wait?

12

discuss
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What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the 
child executed. 

▪ In the program, it is extremely likely this happens if the child is 
calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

13
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Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes 
that aren’t “completely done”

❖ Each process in this table has a process control block 
(PCB) to hold information about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status  (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

14
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Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run 
anymore

▪ still “exists”, has a PCB still, so that a parent can check its status 
one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all 
information related to it has been freed (No more PCB entry)

15
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Diagram: wait_example.c

16

Process Table

User Processes

OS
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Diagram: wait_example.c

17

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…
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Diagram: wait_example.c

18

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…



CIS 3800, Fall 2023L02:  Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

19

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()
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Diagram: wait_example.c

20

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()
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Diagram: wait_example.c

25

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)



CIS 3800, Fall 2023L02:  Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)
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Diagram: wait_example.c

27

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()
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Diagram: wait_example.c

29

User Processes

OS

Process Table

./wait_example 

Is reaped by its 

parent. In our 

example, that is the 

terminal shell
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Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and 
blocks till those seconds have passed

30
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More: waitpid()

❖  

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter 
wstatus

▪ options are optional, pass in 0 for default options in most 
cases

▪ Returns process ID of child who was waited for or -1 on error

31

pid_t waitpid(pid_t pid, int *wstatus, 

  int options);
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wait() status

❖ status output from wait() can be passed to a macro 
to see what changed

❖ Fdddddddddddd   true iff the child exited nomrally

❖ Sss                               true iff the child was signaled to exit

❖ Ssss                             true iff the child stopped

❖ Ssssddddddddddddd   true iff child continued

❖ See example in state_check.c

32

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()
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Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

33
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Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number 
associated with it, and a way it is handled

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

34

Default: ignore

Default: terminate the process

Default: terminate & core dump
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signal()

❖ You can change how a certain signal is handled

❖ signal

❖ Uses the sighandler_t type: a function pointer

▪ D

❖ Returns previous handler for that signal
▪ SIG_ERR when there is an error

❖ Pass in SIG_IGN to ignore the signal

❖ Pass in SIG_DFL for default behaviour 

❖ Some signals like SIG_KILL and SIG_STOP can’t be 
handled differently

35

sighandler_t signal(int signum,

   sighandler_t handler);

typedef void (*sighandler_t)(int);
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Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number 
that raised this handler. Return type is void

❖ Is automatically called when your process is interrupted 
by a signal

❖ Can manipulate global state

❖ If you change signal behaviour within the handler, it will 
be undone when you return

❖ Signal handlers set by a process will be retained in any 
children that are created

36

typedef void (*sighandler_t)(int);



CIS 3800, Fall 2023L02:  Processes, wait(), signal()University of Pennsylvania

Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command 
in the terminal, use ps –u to fine the process id

37
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Any questions so far?

38

discuss

// assume this works

void list_push(list* this, float to_push) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) exit(EXIT_FAILURE);

  node->value = to_push;

  node->next = NULL;

  list->tail->next = node;

  list->tail = node;

}

void handler(int signo) {

  list_push(list, NaN);

}

int main(int argc, char* argv[]) {

  signal(SIGINT, handler);

  float f;

  while(list_size(list) < 20) {

    read_float(stdin, &f);

    list_push(list, f);

  }

  // omitted: do stuff with list

}

This code is broken. It 
compiles, but it 
doesn’t always do 
what we want. Why?

▪ Assume we have 
implemented a 
linked list, and it 
works

▪ Assume list is an 
initialized global 
linked list
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alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after 
the specified number of seconds

❖ Default SIGALRM behaviour: terminate the process

❖ How to cancel alarms?

▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR EXTRA CREDIT: what happens if the child 
process calls alarm? … and default handles it? 39

unsigned int alarm(unsigned int seconds);
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Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

40

discuss

int main(int argc, char* argv[]) {

  alarm(15U);

  return EXIT_SUCCESS;

}
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Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

41



CIS 3800, Fall 2023L02:  Processes, wait(), signal()University of Pennsylvania

kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

42

int kill(pid_t pid, int sig);

kill(child, SIGKILL);
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Non blocking wait w/ waitpid()

❖  

▪ Can pass in WNOHANG for options to make waitpid() not 
block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG 
was passed in

43

pid_t waitpid(pid_t pid, int *wstatus, 

  int options);
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Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5 
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN 
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm() 
TOGETHER CAN CAUSE ISSUES

44
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SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is 
received, and by default ignored.

❖ You can write a signal handler for SIGCHLD, and use that 
to help handle children update statuses: allowing the 
parent process to do other things instead of calling 
wait() or waitpid()

❖ Relevant for proj1: penn-shell

45
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Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

46
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Process Groups

❖ Processes are associated together into Process Groups.

▪ A process always is in a process group

❖ Allows for convenient process & signal management:

▪ If ctrl + c (SIGINT) is sent to a process via the keyboard, it is also 
sent to all processes within its group

❖ When we create a process with fork(), the child belongs to 
the same process group as the parent

❖ Relevant for proj1: penn-shell
47
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Process Group ID

❖ The process group ID is equal to a process ID

▪ The process ID of the first process to exist in the group

▪ If a process group “leader” terminates, can it’s process ID be 
reused by another process? Even if the old group is still going?

▪ Answer: no, that process ID will be reserved until the group is 
done 

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Sets page group id of the specified process to the new 
value

▪ Only works if pgid specifies an existing process group

▪ Or if pgid == pid, thus creating a new process group of that id

48

int setpgid(pid_t pid, pid_t pgid);
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Process Groups: utility

❖ Can pass in -PGID (negative PGID) to kill() and 
waitpid()

❖ Doing so for kill() will send the signal to all processes 
in the group

❖ Doing so for waitpid() will wait for any process in the 
group

❖ You may find this useful for proj1: penn-shell

49
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Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Asynch wait

❖ Process Groups

❖ Process Lifetime

50
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated
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