
CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Processes, wait(), signal() and more!
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Administrivia

❖ Proj0 (penn-shredder) Due 09/13 @ 11:59 pm

▪ This includes git & docker setup instructions. Do this part ASAP, it
can take a while to debug issues with setup

▪ This assignment is done on your own

❖ Check-in Quiz 0 Due before this lecture

▪ Still open, to account for students joining the course a bit late

▪ Don’t expect this to be true with future quizzes

❖ Check-in Quiz 1 Due in ~1 week

2

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Administrivia

❖ Optional Recitations!

▪ We are going to try having optional recitations

▪ First one is today after lecture from 3:30 to 4:30

▪ On zoom and Moore 100C

▪ This one is about C refresher including valgrind & GDB

▪ Materials will be shared afterwards

▪ Will it always be this time slot? idk, TBD

▪ Will we have one every week? Probably not, TBD

3

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture or
the check-in Quiz?

4

Discuss

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume
functions don’t fail

5

Discuss

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"/bin/echo",

 "hello",

 NULL};

 execve(argv[0], argv, envp);

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

6

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

From last time:

7

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

broken_autograder.c

ALWAYS
 ^

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

“waiting” for updates on a Process

❖

▪ Calling process waits for any child process to change status

• Also cleans up the child process if it was a zombie/terminated

▪ Gets the exit status of child process through output parameter
wstatus

▪ Returns process ID of child who was waited for or -1 on error

8

pid_t wait(int *wstatus);
Usual change in status

is to “terminated”

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Execution Blocking

❖ When a process calls wait() and there is a process to
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

9

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Fixed code from last lecture

10

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 wait(); // should error check, not enough slide space :(

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

} autograder.c

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

11

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Poll: how are you?

❖ Can child finish before parent calls wait?

12

discuss

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the
child executed.

▪ In the program, it is extremely likely this happens if the child is
calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

13

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes
that aren’t “completely done”

❖ Each process in this table has a process control block
(PCB) to hold information about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

14

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run
anymore

▪ still “exists”, has a PCB still, so that a parent can check its status
one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all
information related to it has been freed (No more PCB entry)

15

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

16

Process Table

User Processes

OS

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

17

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

18

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

19

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

20

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

21

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

22

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

23

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

24

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

25

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

26

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

27

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

28

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Diagram: wait_example.c

29

User Processes

OS

Process Table

./wait_example

Is reaped by its

parent. In our

example, that is the

terminal shell

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and
blocks till those seconds have passed

30

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

31

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro
to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ See example in state_check.c

32

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

33

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number
associated with it, and a way it is handled

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

34

Default: ignore

Default: terminate the process

Default: terminate & core dump

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

signal()

❖ You can change how a certain signal is handled

❖ signal

❖ Uses the sighandler_t type: a function pointer

▪ D

❖ Returns previous handler for that signal
▪ SIG_ERR when there is an error

❖ Pass in SIG_IGN to ignore the signal

❖ Pass in SIG_DFL for default behaviour

❖ Some signals like SIG_KILL and SIG_STOP can’t be
handled differently

35

sighandler_t signal(int signum,

 sighandler_t handler);

typedef void (*sighandler_t)(int);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number
that raised this handler. Return type is void

❖ Is automatically called when your process is interrupted
by a signal

❖ Can manipulate global state

❖ If you change signal behaviour within the handler, it will
be undone when you return

❖ Signal handlers set by a process will be retained in any
children that are created

36

typedef void (*sighandler_t)(int);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command
in the terminal, use ps –u to fine the process id

37

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Any questions so far?

38

discuss

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

 list->tail->next = node;

 list->tail = node;

}

void handler(int signo) {

 list_push(list, NaN);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

This code is broken. It
compiles, but it
doesn’t always do
what we want. Why?

▪ Assume we have
implemented a
linked list, and it
works

▪ Assume list is an
initialized global
linked list

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after
the specified number of seconds

❖ Default SIGALRM behaviour: terminate the process

❖ How to cancel alarms?

▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR EXTRA CREDIT: what happens if the child
process calls alarm? … and default handles it? 39

unsigned int alarm(unsigned int seconds);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

40

discuss

int main(int argc, char* argv[]) {

 alarm(15U);

 return EXIT_SUCCESS;

}

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

41

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

42

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not
block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG
was passed in

43

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm()
TOGETHER CAN CAUSE ISSUES

44

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is
received, and by default ignored.

❖ You can write a signal handler for SIGCHLD, and use that
to help handle children update statuses: allowing the
parent process to do other things instead of calling
wait() or waitpid()

❖ Relevant for proj1: penn-shell

45

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Process Groups

❖ Process Lifetime

46

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Process Groups

❖ Processes are associated together into Process Groups.

▪ A process always is in a process group

❖ Allows for convenient process & signal management:

▪ If ctrl + c (SIGINT) is sent to a process via the keyboard, it is also
sent to all processes within its group

❖ When we create a process with fork(), the child belongs to
the same process group as the parent

❖ Relevant for proj1: penn-shell
47

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Process Group ID

❖ The process group ID is equal to a process ID

▪ The process ID of the first process to exist in the group

▪ If a process group “leader” terminates, can it’s process ID be
reused by another process? Even if the old group is still going?

▪ Answer: no, that process ID will be reserved until the group is
done

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Sets page group id of the specified process to the new
value

▪ Only works if pgid specifies an existing process group

▪ Or if pgid == pid, thus creating a new process group of that id

48

int setpgid(pid_t pid, pid_t pgid);

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Process Groups: utility

❖ Can pass in -PGID (negative PGID) to kill() and
waitpid()

❖ Doing so for kill() will send the signal to all processes
in the group

❖ Doing so for waitpid() will wait for any process in the
group

❖ You may find this useful for proj1: penn-shell

49

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Lecture Outline

❖ wait(), blocking, Zombies & PCB

❖ kill(), signal(), alarm()

❖ Asynch wait

❖ Process Groups

❖ Process Lifetime

50

CIS 3800, Fall 2023L02: Processes, wait(), signal()University of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated

	Default Section
	Slide 1: Processes, wait(), signal() and more! Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Poll: how are you?
	Slide 6: Lecture Outline
	Slide 7: From last time:
	Slide 8: “waiting” for updates on a Process
	Slide 9: Execution Blocking
	Slide 10: Fixed code from last lecture
	Slide 11: Demo: wait_example
	Slide 12: Poll: how are you?
	Slide 13: What if the child finishes first?
	Slide 14: Process Tables & Process Control Blocks
	Slide 15: Zombie Process
	Slide 16: Diagram: wait_example.c
	Slide 17: Diagram: wait_example.c
	Slide 18: Diagram: wait_example.c
	Slide 19: Diagram: wait_example.c
	Slide 20: Diagram: wait_example.c
	Slide 21: Diagram: wait_example.c
	Slide 22: Diagram: wait_example.c
	Slide 23: Diagram: wait_example.c
	Slide 24: Diagram: wait_example.c
	Slide 25: Diagram: wait_example.c
	Slide 26: Diagram: wait_example.c
	Slide 27: Diagram: wait_example.c
	Slide 28: Diagram: wait_example.c
	Slide 29: Diagram: wait_example.c
	Slide 30: Demo: state_example
	Slide 31: More: waitpid()
	Slide 32: wait() status
	Slide 33: Lecture Outline
	Slide 34: Signals
	Slide 35: signal()
	Slide 36: Signal handlers
	Slide 37: Demo ctrlc.c
	Slide 38: Any questions so far?
	Slide 39: alarm()
	Slide 40: Poll: how are you?
	Slide 41: Demo no_sleep.c
	Slide 42: kill()
	Slide 43: Non blocking wait w/ waitpid()
	Slide 44: Demo impatient.c
	Slide 45: SIGCHLD handler
	Slide 46: Lecture Outline
	Slide 47: Process Groups
	Slide 48: Process Group ID
	Slide 49: Process Groups: utility
	Slide 50: Lecture Outline
	Slide 51: Process State Lifetime

