
CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Signals & Critical Sections
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Poll: how are you?

❖ How aare u

2

pollev.com/tqm

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Administrivia

❖ Proj0 (penn-shredder) Due yesterday @ 11:59 pm

▪ This assignment is done on your own

▪ Late days still exist though (and they are applied automatically)

❖ Peer Evaluation & Project1 to be released later this week

▪ Find a partner and sign up in a group on canvas

▪ Decent indicator of good partner for a pair: similar work ethic

❖ Project 1 Demo and Q&A in next lecture

❖ Check-in Quiz 2 Due in ~1 week

3

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting

5

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Diagram: signals

6

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Diagram: signals

7

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CTRL + C

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Diagram: signals

8

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CTRL + C

Signals go through the OS

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Diagram: signals between processes

9

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Diagram: signals between processes

10

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

When one process tries to
send a signal to another, it
goes through the OS

Good rule of thumb:
If a process wants to
interact with another
process, it does so through
the OS.

The OS tries to make sure
processes stay “safe” in
their interactions

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Signals can interrupt other signals

❖ See code demo: signal_interrupt.c

▪ Handler registered for SIGALRM and SIGINT

▪ Once SIGALRM goes off, it continuously loops and prints

▪ SIGINT can be input and run its handler even if SIGALRM was
running its handler

11

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting

12

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Previously: Execution Blocking

❖ When a process calls wait() and there is a process to
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

❖ This happens frequently when a system call is made, that
calling process will block till the system call can be
completed.

❖ This is DIFFERENT than signal blocking
13

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Signal Blocking

❖ A process has some set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Blocked signals mean that the signal is temporarily paused from
being delivered, instead that signal is “delayed” until the process
eventually unblocks that signal

❖ Common mistake: thinking this is the same as calling
signal(SIG____, SIG_IGN);

This function call marks the signal as ignored, which
means a signal delivered during this time is completely
ignored, never delivered later.

❖ REMINDER: Different from a process “blocking”
14

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

…

Aside: a way to implement a set in C

❖ If we have a fixed number of items that can possibly be in
the set, then we can use a bitset

❖ Have at least N bits, each item corresponding to a single
bit.

▪ Each items assigned bit can either be a 0 or a 1, 0 to indicate
absence in the set, 1 to indicate presence in the set

❖ Example:

15

… 0 1 0 1 1 1 0 0 1

Item “A”Item “B”

B is not in the set A is in the set

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Poll: how are you?

❖ If we have 39 signals, how many bits do we need to have a
bitset to represent all signals? How many bytes?

16

pollev.com/tqm

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

❖ Sigemptyset

▪ Initializes a sigset_t to be empty

❖ sigaddset

▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

17

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;

if (sigemptyset(&mask) == -1) {

 // error

}

if (sigaddset(&mask, SIGINT) == -1) {

 // error

}

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ Three arguments, how do we use them?

❖ Look at the man page, how do we complete this code?

▪ man sigprocmask

18

int sigprocmask(int how, const sigset_t* set,

 sigset_t* oldset);

pollev.com/tqm

sigset_t mask;

if (sigemptyset(&mask) == -1) { // error }

if (sigaddset(&mask, SIGINT) == -1) { // error }

// how do we block SIGINT?

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Demo: delay_sigint.c

❖ Demo: delay_sigint.c

▪ blocks the signal SIGINT so that if CTRL + C is typed in the first 5
seconds, it doesn’t get processed till after the first 5 seconds of
the program running

▪ CTRL + C after the first 5 seconds works as normal

19

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting

20

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Concurrent Processes

❖ Each process is a logical control flow.

❖ Two processes run concurrently (are concurrent) if
their flows overlap in time

❖ Otherwise, they are sequential

❖ Examples (running on single core):

▪ Concurrent: A & B, A & C

▪ Sequential: B & C
Process A Process B Process C

Time

Note how at

any specific moment

in time only one

process is running

Black line

indicates that the

process is running

during that time

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a

specific point in time. (Multiple instructions are

performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

23

Assuming

more than one

CPU/CORE

Process A Process B Process C

Time

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Sections

❖ There can be issues when a resources is accessed
concurrently that causes the resource to be put in an
invalid or error state.

These sections of code, called critical sections, need to be
protected from concurrent access happening during it

❖ With concurrent processes accessing OS resources, the OS
will handle critical sections for us

❖ Even if we have one process, we can have signal handlers
execute at any time, leading to possible concurrent access
of memory, which is not default protected for us 24

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Remember this poll?

25

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

void handler(int signo) {

 list_push(list, NaN);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

This code is broken. It
compiles, but it
doesn’t always do
what we want. Why?

▪ Assume we have
implemented a
linked list, and it
works

▪ Assume list is an
initialized global
linked list

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Remember this poll?

26

void handler(int signo) {

 list_push(list, NaN);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

❖ This code is problematic since there is a critical section

Process A Process A
signal handler

Time list_push list_push

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough

27

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time

list tail

...

value

next

3.14

NULL

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough

28

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough

29

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler interrupts and

runs list_push while the process

is normally running list_push

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough

30

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler finishes, and we

return to running the main process

normally…

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough

31

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler finishes, and we

return to running the main process

normally

and we end up in an invalid

linked list state…

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Poll: how are you?

❖ How can we fix this
code?

32

pollev.com/tqm

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

void handler(int signo) {

 list_push(list, NaN);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting

33

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Stopped Jobs

❖ Processes can be in a state slightly different than being
blocked. // This is relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not
run on the CPU until it is resumed by the SIGCONT signal

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

34

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGSTOP
(ctrl + Z)

SIGCONT
received

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting

36

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Busy Waiting

❖ Busy Waiting: when code repeatedly checks some
condition, waiting for the condition to be satisfied

▪ Sometimes called Spinning, like the phrase “spinning your wheels”

❖ We’ve done this before, see delay_sigint.c

❖ Demo: running delay_sigint and using the terminal
command top to see the CPU utilization

37

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

Poll: how are you?

❖ Why might busy waiting be bad?
It is not like the program can do anything else while it is
waiting, so why is it bad?

38

pollev.com/tqm

CIS 3800, Fall 2023L05: Signals & Critical SectionsUniversity of Pennsylvania

sigsuspend()

❖ Instead of busy waiting and wasting CPU cycles (that c an
be used by other processes), we can block/suspend
process execution instead

❖ d

▪ Temporarily replaces process mask with specified one and
suspends execution till a signal that is not blocked is delivered.

▪ If signal is caught by a handler, then after handler code will return
from sigsuspend and the process signal mask will be restored

❖ Demo: suspend_sigint.c

▪ Compare to previous code: delay_sigint.c

▪ Less CPU resources used ☺ 39

int sigsuspend(const sigset_t* mask);

	Default Section
	Slide 1: Signals & Critical Sections Computer Operating Systems, Fall 2023
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Diagram: signals
	Slide 7: Diagram: signals
	Slide 8: Diagram: signals
	Slide 9: Diagram: signals between processes
	Slide 10: Diagram: signals between processes
	Slide 11: Signals can interrupt other signals
	Slide 12: Lecture Outline
	Slide 13: Previously: Execution Blocking
	Slide 14: Signal Blocking
	Slide 15: Aside: a way to implement a set in C
	Slide 16: Poll: how are you?
	Slide 17: sigset_t
	Slide 18: sigprocmask()
	Slide 19: Demo: delay_sigint.c
	Slide 20: Lecture Outline
	Slide 21: Concurrent Processes
	Slide 23: Parallel Processes
	Slide 24: Critical Sections
	Slide 25: Remember this poll?
	Slide 26: Remember this poll?
	Slide 27: Critical Section Walkthrough
	Slide 28: Critical Section Walkthrough
	Slide 29: Critical Section Walkthrough
	Slide 30: Critical Section Walkthrough
	Slide 31: Critical Section Walkthrough
	Slide 32: Poll: how are you?
	Slide 33: Lecture Outline
	Slide 34: Stopped Jobs
	Slide 35: Process State Lifetime
	Slide 36: Lecture Outline
	Slide 37: Busy Waiting
	Slide 38: Poll: how are you?
	Slide 39: sigsuspend()

