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Poll: how are you?

❖ How aare u
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Administrivia

❖ Proj0 (penn-shredder) Due yesterday @ 11:59 pm

▪ This assignment is done on your own

▪ Late days still exist though (and they are applied automatically)

❖ Peer Evaluation & Project1 to be released later this week

▪ Find a partner and sign up in a group on canvas

▪ Decent indicator of good partner for a pair: similar work ethic

❖ Project 1 Demo and Q&A in next lecture

❖ Check-in Quiz 2 Due in ~1 week
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting
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Diagram: signals
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User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}
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Diagram: signals
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User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}

CTRL + C
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Diagram: signals
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User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}

CTRL + C

Signals go through the OS
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Diagram: signals between processes
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User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)
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Diagram: signals between processes
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User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

When one process tries to
send a signal to another, it
goes through the OS

Good rule of thumb:
If a process wants to
interact with another
process, it does so through
the OS.

The OS tries to make sure
processes stay “safe” in
their interactions
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Signals can interrupt other signals

❖ See code demo: signal_interrupt.c

▪ Handler registered for SIGALRM and SIGINT

▪ Once SIGALRM goes off, it continuously loops and prints

▪ SIGINT can be input and run its handler even if SIGALRM was 
running its handler
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Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting
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Previously: Execution Blocking 

❖ When a process calls wait() and there is a process to 
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for 
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

❖ This happens frequently when a system call is made, that 
calling process will block till the system call can be 
completed.

❖ This is DIFFERENT than signal blocking
13
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Signal Blocking 

❖ A process has some set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Blocked signals mean that the signal is temporarily paused from 
being delivered, instead that signal is “delayed” until the process 
eventually unblocks that signal

❖ Common mistake: thinking this is the same as calling 
signal(SIG____, SIG_IGN);

This function call marks the signal as ignored, which 
means a signal delivered during this time is completely 
ignored, never delivered later.

❖ REMINDER: Different from a process “blocking”
14
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…

Aside: a way to implement a set in C

❖ If we have a fixed number of items that can possibly be in 
the set, then we can use a bitset

❖ Have at least N bits, each item corresponding to a single 
bit.

▪ Each items assigned bit can either be a 0 or a 1, 0 to indicate 
absence in the set, 1 to indicate presence in the set

❖ Example:

15

… 0 1 0 1 1 1 0 0 1

Item “A”Item “B”

B is not in the set A is in the set
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Poll: how are you?

❖ If we have 39 signals, how many bits do we need to have a 
bitset to represent all signals? How many bytes?
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❖ Sigemptyset

▪ Initializes a sigset_t to be empty

❖ sigaddset

▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

17

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;

if (sigemptyset(&mask) == -1) {

  // error

}

if (sigaddset(&mask, SIGINT) == -1) {

  // error

}
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sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ Three arguments, how do we use them?

❖ Look at the man page, how do we complete this code?

▪ man sigprocmask
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int sigprocmask(int how, const sigset_t* set,

                         sigset_t* oldset);

pollev.com/tqm

sigset_t mask;

if (sigemptyset(&mask) == -1) { // error }

if (sigaddset(&mask, SIGINT) == -1) { // error }

// how do we block SIGINT?
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Demo: delay_sigint.c

❖ Demo: delay_sigint.c

▪ blocks the signal SIGINT so that if CTRL + C is typed in the first 5 
seconds, it doesn’t get processed till after the first 5 seconds of 
the program running

▪ CTRL + C after the first 5 seconds works as normal

19
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Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting
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Concurrent Processes

❖ Each process is a logical control flow. 

❖ Two processes run concurrently (are concurrent) if 
their flows overlap in time

❖ Otherwise, they are sequential

❖ Examples (running on single core):

▪ Concurrent: A & B, A & C

▪ Sequential: B & C
Process A Process B Process C

Time

Note how at

any specific moment 

in time only one 

process is running

Black line 

indicates that the 

process is running 

during that time
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Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a

specific point in time. (Multiple instructions are

performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

23

Assuming 

more than one 

CPU/CORE

Process A Process B Process C

Time
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Critical Sections

❖ There can be issues when a resources is accessed 
concurrently that causes the resource to be put in an 
invalid or error state.

These sections of code, called critical sections, need to be
protected from concurrent access happening during it

❖ With concurrent processes accessing OS resources, the OS 
will handle critical sections for us

❖ Even if we have one process, we can have signal handlers 
execute at any time, leading to possible concurrent access
of memory, which is not default protected for us 24
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Remember this poll?
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// assume this works

void list_push(list* this, float to_push) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) exit(EXIT_FAILURE);

  node->value = to_push;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

void handler(int signo) {

  list_push(list, NaN);

}

int main(int argc, char* argv[]) {

  signal(SIGINT, handler);

  float f;

  while(list_size(list) < 20) {

    read_float(stdin, &f);

    list_push(list, f);

  }

  // omitted: do stuff with list

}

This code is broken. It 
compiles, but it 
doesn’t always do 
what we want. Why?

▪ Assume we have 
implemented a 
linked list, and it 
works

▪ Assume list is an 
initialized global 
linked list
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Remember this poll?

26

void handler(int signo) {

  list_push(list, NaN);

}

int main(int argc, char* argv[]) {

  signal(SIGINT, handler);

  float f;

  while(list_size(list) < 20) {

    read_float(stdin, &f);

    list_push(list, f);

  }

  // omitted: do stuff with list

}

❖ This code is problematic since there is a critical section

Process A Process A
signal handler

Time list_push list_push
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Critical Section Walkthrough
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// assume this works

void list_push(list* this, float f) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) {

    exit(EXIT_FAILURE);

  }

  node->value = f;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

Process A

Time

list tail

...

value

next

3.14

NULL



CIS 3800, Fall 2023L05:  Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough
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// assume this works

void list_push(list* this, float f) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) {

    exit(EXIT_FAILURE);

  }

  node->value = f;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL
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Critical Section Walkthrough
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// assume this works

void list_push(list* this, float f) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) {

    exit(EXIT_FAILURE);

  }

  node->value = f;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler interrupts and

runs list_push while the process

is normally running list_push



CIS 3800, Fall 2023L05:  Signals & Critical SectionsUniversity of Pennsylvania

Critical Section Walkthrough
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// assume this works

void list_push(list* this, float f) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) {

    exit(EXIT_FAILURE);

  }

  node->value = f;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler finishes, and we

return to running the main process

normally…
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Critical Section Walkthrough
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// assume this works

void list_push(list* this, float f) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) {

    exit(EXIT_FAILURE);

  }

  node->value = f;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

NaN

NULL
Signal handler finishes, and we

return to running the main process

normally

and we end up in an invalid

linked list state…
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Poll: how are you?

❖ How can we fix this 
code?

32

pollev.com/tqm

// assume this works

void list_push(list* this, float to_push) {

  Node* node = malloc(sizeof(Node));

  if (node == NULL) exit(EXIT_FAILURE);

  node->value = to_push;

  node->next = NULL;

  this->tail->next = node;

  this->tail = node;

}

void handler(int signo) {

  list_push(list, NaN);

}

int main(int argc, char* argv[]) {

  signal(SIGINT, handler);

  float f;

  while(list_size(list) < 20) {

    read_float(stdin, &f);

    list_push(list, f);

  }

  // omitted: do stuff with list

}
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Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting
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Stopped Jobs

❖ Processes can be in a state slightly different than being 
blocked. // This is relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not 
run on the CPU until it is resumed by the SIGCONT signal

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

34
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGSTOP
(ctrl + Z)

SIGCONT
received
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Lecture Outline

❖ Signal high level view

❖ Signal Blocking
▪ sigset_t & sigprocmask

❖ Critical section & blocking

❖ Updated process state diagrams: stop & continue

❖ sigsuspend & busy waiting
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Busy Waiting

❖ Busy Waiting: when code repeatedly checks some 
condition, waiting for the condition to be satisfied

▪ Sometimes called Spinning, like the phrase “spinning your wheels”

❖ We’ve done this before, see delay_sigint.c

❖ Demo: running delay_sigint and using the terminal 
command top to see the CPU utilization

37
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Poll: how are you?

❖ Why might busy waiting be bad?
It is not like the program can do anything else while it is 
waiting, so why is it bad?

38
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sigsuspend()

❖ Instead of busy waiting and wasting CPU cycles (that c an 
be used by other processes), we can block/suspend 
process execution instead

❖ d

▪ Temporarily replaces process mask with specified one and 
suspends execution till a signal that is not blocked is delivered.

▪ If signal is caught by a handler, then after handler code will return 
from sigsuspend and the process signal mask will be restored

❖ Demo: suspend_sigint.c

▪ Compare to previous code: delay_sigint.c

▪ Less CPU resources used ☺ 39

int sigsuspend(const sigset_t* mask);
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