
CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Terminal Control & Proj1 demo
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Poll: how are you?

❖ How was project 0?
Are you excited for more C and project 1? ☺

2

pollev.com/tqm

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Administrivia

❖ Peer Evaluation: out now, due Friday 9/22 @ 11:59 pm

▪ Please do it, it shouldn’t take long

▪ Mostly completion, don’t just say “this is fine” for everything

❖ Project 1 is out now

▪ The milestone is due Wed 9/27 @ 11:59 pm
late deadline: 11:59 pm on Sun, Oct 01

▪ Project is due 11:59 pm on Wed, Oct 11
late deadline 11:59 pm on Sun, Oct 15

▪ Demo of project 1 in the last half of this class

▪ After this class, should have everything needed to complete the
project

3

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Administrivia

❖ Recitation 3

▪ After lecture today, going over pipes and redirection

▪ Should help with finishing the project milestone

❖ Partner sign up

▪ If you do not have a partner, we will begin random pairing the
remaining students sometime tonight

❖ Check-in Quiz 3 Due in ~1 week

4

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

5

pollev.com/tqm

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Lecture Outline

❖ Process Groups Revisited
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

❖ Project 1 Demo & Q&A

6

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Process Groups

❖ Processes are associated together into Process Groups.

▪ A process always is in a process group

❖ Allows for convenient process & signal management:

▪ If ctrl + C (SIGINT) is sent to a process via the keyboard, it is also
sent to all processes within its group

❖ When we create a process with fork(), the child belongs to
the same process group as the parent

❖ Shell has the notion of a job: “commands” started
interactively. All processes in a job are in the same group

❖ Relevant for proj1: penn-shell 7

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Process Group ID

❖ The process group ID is equal to a process ID

▪ The process ID of the first process to exist in the group

▪ If a process group “leader” terminates, can its process ID be
reused by another process? Even if the old group is still going?

▪ Answer: no, that process ID will be reserved until the group is
done

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Sets page group id of the specified process to the new
value

▪ Only works if pgid specifies an existing process group

▪ Or if pgid == pid, creates a new process group of that id

8

int setpgid(pid_t pid, pid_t pgid);

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Process Group ID

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Gets the process group id of the specified process

❖ If 0 is passed in, get the group ID of the calling process

❖ -1 returned on error

9

pid_t getpgid(pid_t pid);

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

CTRL +C, same group

10

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

CTRL +C, same group

11

User Processes

OS

./example

 pid = 100

CTRL + C

/bin/sleep

 pid = 101

pgid = 100

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

CTRL +C, same group

12

User Processes

OS

./example

 pid = 100

CTRL + C

/bin/sleep

 pid = 101

pgid = 100

SIGINT is sent to every
Process in the process
group

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

GAP SLIDE: MOVING ON TO DIFFERENT
EXAMPLE

13

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

CTRL +C, different group

14

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

CTRL +C, different group

15

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CTRL + C

SIGINT is sent to every
Process in the process
group

Child is in a separate
group

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

GAP SLIDE: MOVING ON TO DIFFERENT
EXAMPLE

16

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Process Groups: utility

❖ Can pass in -PGID (negative PGID) to kill() and
waitpid()

❖ Doing so for kill() will send the signal to all processes
in the group

❖ Doing so for waitpid() will wait for any process in the
group

❖ You may find this useful for proj1: penn-shell

17

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Diagram: signals between process groups

18

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

Let's say child calls fork

fork()

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Diagram: signals between process groups

19

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

Let's say child calls fork

New child (grandchild of
initial process) would be
in the child’s group

/bin/sleep

 pid = 102

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Diagram: signals between process groups

20

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(101, SIGINT)

Then it only goes to its
child

/bin/sleep

 pid = 102

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Diagram: signals between process groups

21

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(-101, SIGINT)

Then it goes to all
processes in the 101
group

/bin/sleep

 pid = 102

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Demo: pgrpg_signals.c

❖ See code demo: pgrp_signals.c

▪ Handler registered for SIGINT in both child and parent

▪ Parent puts child in its own group

▪ CTRL + C is input -> parent signal handler is invoked -> parent
relays the signal to the child

▪ What happens if we don’t call kill in parent handler?

▪ What happens if we then don’t put child in its own group?

22

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Lecture Outline

❖ Process Groups Revisited
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

❖ Project 1 Demo & Q&A

23

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

What if the child tried to use the terminal?

❖ Demo!
▪ Modify the pgrp_signals.c so that the child does “cat” (read

from stdin, echo it to stdout until EOF)

▪ it does not work?

24

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Sessions

❖ A Session is a collection of process groups

▪ A session can be attached to a controlling terminal

▪ Or not attached to any terminal (daemon’s)

❖ You can think of a session as mostly associated with a
“login” or instance of a terminal application. Each
login/terminal is a session

❖ Within a session (that has a controlling terminal) there are

▪ Background processes

▪ Foreground processes

25

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Foreground Process Groups

❖ Foreground process groups (i.e., Foreground Jobs) can
read from STDIN and the processes in that group receive
the signals from the keyboard (e.g., CTRL + C)

❖ A foreground group can make another group the
foreground with the function:

❖ Tcsetpgrp
▪ fd is a file descriptor associated with the terminal (stdin)

▪ Sets the process group specified by pgrp to be the foreground
process group

▪ -1 returned on error, 0 when successful

26

int tcsetpgrp(int fd, pid_t pgrp);

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Background Process

❖ If a background process tries to read from stdin, it gets
sent the signal SIGTTIN

❖ If a background process tries to take control of the
terminal with tcsetgpgrp, then the group gets sent
SIGTTOU, which will stop the process group

❖ Writing to stdout from the background is ok, but can be
configured so that background processes get SIGTTOU

27

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Demo: tc.c

❖ See code demo: tc.c

▪ Fixed our process group code so that it can run cat ☺

▪ Parent can print to stdout even if has given away the terminal

▪ How can we make the parent take back the terminal control?

28

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Demo: tc.c

❖ What is the intention of this code? Does it do what it
intends to do? How can we fix it?

29

pollev.com/tqm

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Demo: tc_loop.c

❖ See code demo: tc_loop.c

▪ The code from the poll

▪ Let's try to fix it…

▪ How can we make the parent take back the terminal control?

30

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Lecture Outline

❖ Process Groups Revisited
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

❖ Project 1 Demo & Q&A

31

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Background in the shell

❖ To start a background job in the shell (and in penn-shell)
run the command with a & at the end.
▪ sleep 10 &

❖ While a command is running in the background, we can
run other commands in the shell

❖ Can use the jobs command to see the status of the jobs
we have started

32

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Penn-shell

❖ Part of what you do in HW1 (after the milestone) is to
make a shell that manages process groups in the
foreground and background

❖ This means your code will have to handle multiple process
groups at once, keeping track of the state of all of them.

❖ Need to maintain a linked list of the current jobs to
handle job control

33

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

"Normal" approach Pseudo Code

❖ Discuss: what does this do?

❖ Is there a flaw in this?
Not in correctness but
maybe

▪ Responsiveness

▪ Resource utilization

▪ etc.

34

int main(int argc, char* argv[]) {

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 waitpid(pid, &wstatus, 0);

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

 // re-prompt user

 }

}

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Analysis: "Normal"

❖ The “normal”: check background processes before re-
prompting the user

▪ may not be responsive to background processes finishing

▪ Consider we have many background processes then the user runs
sleep 1000000 in the foreground...

▪ those background processes will not be reaped until foreground
finishes

35

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

"Polling" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

36

int main(int argc, char* argv[]) {

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 while (waitpid(pid, &wstatus, WNOHANG) == 0) {

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

 }

 // re-prompt user

 }

}

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Analysis: Polling

❖ Polling is a term used to describe when we check to see if
something is ready, but do not block if it is not ready

❖ This approach is more responsive than the previous one…

❖ but it busy waits… consuming CPU cycles…

37

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Aside: SIGCHLD

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is
terminated

▪ Is ignored by default

38

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

"async" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

39

void handler(int signo) {

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

}

int main(int argc, char* argv[]) {

 signal(SIGCHLD, handler);

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 waitpid(pid, &wstatus, 0);

 // re-prompt user

 }

}

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Analysis: Async

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is
terminated

▪ Is ignored by default

❖ This allows us to respond quickly to the background
children terminating

❖ No busy waiting! Main process instead is mostly blocked
waiting on the foreground job

❖ Must use signal handlers and handle critical sections ;_;

❖ Handling this ASYNC is your extra credit
pass the normal autograder first PLEASE 40

CIS 3800, Fall 2023L06: Terminal Control & Proj1 DemoUniversity of Pennsylvania

Lecture Outline

❖ Process Groups Revisited
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

❖ Project 1 Demo & Q&A

41

	Default Section
	Slide 1: Terminal Control & Proj1 demo Computer Operating Systems, Fall 2023
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Poll: how are you?
	Slide 6: Lecture Outline
	Slide 7: Process Groups
	Slide 8: Process Group ID
	Slide 9: Process Group ID
	Slide 10: CTRL +C, same group
	Slide 11: CTRL +C, same group
	Slide 12: CTRL +C, same group
	Slide 13: GAP SLIDE: MOVING ON TO DIFFERENT EXAMPLE
	Slide 14: CTRL +C, different group
	Slide 15: CTRL +C, different group
	Slide 16: GAP SLIDE: MOVING ON TO DIFFERENT EXAMPLE
	Slide 17: Process Groups: utility
	Slide 18: Diagram: signals between process groups
	Slide 19: Diagram: signals between process groups
	Slide 20: Diagram: signals between process groups
	Slide 21: Diagram: signals between process groups
	Slide 22: Demo: pgrpg_signals.c
	Slide 23: Lecture Outline
	Slide 24: What if the child tried to use the terminal?
	Slide 25: Sessions
	Slide 26: Foreground Process Groups
	Slide 27: Background Process
	Slide 28: Demo: tc.c
	Slide 29: Demo: tc.c
	Slide 30: Demo: tc_loop.c
	Slide 31: Lecture Outline
	Slide 32: Background in the shell
	Slide 33: Penn-shell
	Slide 34: "Normal" approach Pseudo Code
	Slide 35: Analysis: "Normal"
	Slide 36: "Polling" approach Pseudo Code
	Slide 37: Analysis: Polling
	Slide 38: Aside: SIGCHLD
	Slide 39: "async" approach Pseudo Code
	Slide 40: Analysis: Async
	Slide 41: Lecture Outline

