
CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Memory Allocation
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is/was ur favourite CIS course (do not include this
one)

2

pollev.com/tqm

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ Project 1 is out now

▪ Project is due 11:59 pm on Wed, Oct 11 (1 week from tomorrow)
late deadline 11:59 pm on Sun, Oct 15

❖ For project 1 full submission, please do a group
submission on gradescope (one of you submits but you
add your partner to the submission)

❖ Recitation today on process groups, terminal control and
waitpid

3

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Heap & Stack

❖ Fragmentation & Allocation Strategies

❖ Buddy Algorithm

❖ Slab Algorithm

5

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack & Heap

❖ Hopefully you are familiar with the stack and the heap,

▪ Quick refresher now though

❖ Stack:

▪ Where local variables & information for local functions are stored
(return address, etc).

▪ Grows whenever you call a function. pushes a “stack frame” for
each function call.

❖ Heap:

▪ Dynamically allocated data stored here. Usually done when data
needs to exist beyond the scope it is allocated in, or the size is not
known at compile time

6

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack Example:

7

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for main is
created when CPU
starts executing it

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack Example:

8

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack Example 1:

9

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame
goes away after
sum() returns.

main()’s stack frame
is now top of the stack
and we keep executing
main()

????

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack Example:

10

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
printf()

????

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux
versions. Works in bash on Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread, more on threads next lecture)

11

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for
Dynamic allocation

❖ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

12

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Free Lists

❖ One way that malloc can be implemented is by
maintaining an implicit list of the space available and
space allocated.

❖ Before each chunk of allocated/free memory, we’ll also
have this metadata:

13

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list ->

Dynamic Memory Example

14

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header

{

 NULL,

 NULL,

 false,

 1024

}

This diagram is

not to scale

The metadata is at

the beginning of the

chunk of memory

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

15

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 1020

}

malloc

return

value

Free chunks can

be split to

allocate blocks of

specific size

Malloc gets a

pointer to just

after the

metadata

free_list

points to first

free chunk

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

16

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

malloc

return

value

{

 0x…,

 NULL,

 false,

 996

}

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

17

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

18

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

19

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header

{

 NULL,

 0x…,

 false,

 1024

}

Once a block has been

freed, we can try to

“coalesce” it with

their neighbors

The first free

couldn’t be coalesced,

only neighbor was

allocated

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Heap

❖ malloc() and free() are not system calls, they are
implemented as part of the C std library
▪ malloc() and free() will sometimes internally invoke system

calls to expand the heap if needed

▪ Instead, these functions just manipulate memory already given to
the process, marking some as free and some as allocated

❖ brk() and sbrk()

▪ Used to grow/shrink the data segment of memory

❖ mmap(), munmap()

▪ creates / or destroys a mapping in virtual address space

20

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Heap & Stack

❖ Fragmentation & Allocation Strategies

❖ Buddy Algorithm

❖ Slab Algorithm

21

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Fragmentation

❖ Fragmentation: when storage is used inefficiently, which
can hurt performance and ability to allocate things.

Specifically, when there is something that prevents
"unused" memory from otherwise being used

❖ External Fragmentation: when free memory is spread out
over small portions that cannot be coalesced into a bigger
block that can be used for allocation

22

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

23

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

24

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header header

{

 NULL,

 0x…,

 true,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

25

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header header header

{

 0x…,

 0x…,

 false,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

After some more series of allocations
and frees (not shown), we get this:

Let’s say malloc(4) gets called
(trying to allocate 4 bytes)
what happens?

There are 4 bytes of free space, but they
aren’t next to each other and can’t be
coalesced into something that can be
used. Heap would need to grow to
make space (if possible)

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Internal Fragmentation

❖ Internal Fragmentation: When more space is allocated for
something than is actually used. This fragmentation
happens “internally” within an allocated portion, instead
of “external” to one.

❖ What if someone calls malloc(4096 * sizeof(char*)) and
only uses the first char*?

▪ Can be thought of internal fragmentation, not the allocator's fault
though (in this use case)

❖ Sometimes we call malloc() and more space is allocated
than needed.

▪ if we allocate for 7 bytes, 8 may actually be allocated. Computer
may want addresses to be aligned to a multiple of a power of 2

26

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

First Fit

❖ There may be multiple free blocks that can be chosen for
allocation.

❖ The allocation policy we used in our examples is First Fit:
find the first block of memory that is big enough

▪ Start at the front of the free list, iterate till we find something big
enough

▪ Usually the simplest to implement

27

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Best Fit

❖ Best Fit: another approach where instead you look for the
portion of memory that is the “best” or “tightest” fit

❖ If allocating for 4 bytes of memory, search for the smallest
block that is >= 4 bytes.

28

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Worst Fit

❖ Worst Fit: another approach where instead you look for
the portion of memory that is the “worst” fit (opposite of
best fit)

❖ If allocating for 4 bytes of memory, search for the largest
block that is >= 4 bytes.

29

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is the approximate runtime of the algorithms? (e.g.
O(N log(N))). What is the best/worst case?

▪ First Fit

▪ Best Fit

▪ Worst Fit

❖ Lets say we call malloc(4 bytes). Which block is
allocated in this example if we choose:

▪ First Fit

▪ Best fit

▪ Worst fit

free_list

30

pollev.com/tqm

header header header header header

size = 8 size = 1024size = 16

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can
work better than best fit. Why is this the case?

pollev.com/tqm

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can
work better than best fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and
easier to reuse

❖ In the previous example, if we allocate for size 6…

pollev.com/tqm

header header header header header

size = 1024size = 16
size = 8

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can
work better than best fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and
easier to reuse

❖ In the previous example, if we allocate for size 6…

▪ Best fit would allocate the size 8 free chunk leaving a size 2 chunk
that is unlikely to be usable

pollev.com/tqm

header header header header header

size = 1024size = 16
size = 8

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can
work better than best fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and
easier to reuse

❖ In the previous example, if we allocate for size 6…

▪ Worst fit would use 1024, splitting it into 6 and 1018. 8 chunk is
still usable and 1018 is still usable.

pollev.com/tqm

header header header header header

size = 1024size = 16
size = 8

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Heap & Stack

❖ Fragmentation & Allocation Strategies

❖ Buddy Algorithm

❖ Slab Algorithm

35

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm

❖ Keeps in mind that there is some “maximum” amount of
memory and divides memory into partitions that are
powers of 2.

▪ Power of 2 allows for compact allocation tracking and makes
coalescing memory quick.

▪ Usually with the smallest unit being 1 page, 4096 bytes.

❖ Modified implementation of the buddy system is one of
many things used by the Linux kernel and the others (like
a version of malloc called jemalloc)

36

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ We start with the full pool of memory, in this example, 24
pages (usually a higher cap than this, this is for example)

❖ What happens if someone asks to allocate 1 page?

37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

22 pages 22 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

❖ Can mark the one page as being used by allocation A

42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 2 pages, what happens?

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 2 pages, what happens?

❖ We can claim the 21-page chunk and mark it as being used
by allocation B

44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 3 pages, what happens?

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 3 pages, what happens?

❖ Buddy ONLY deals with powers of 2, this gets rounded up
to 22 pages (4 pages)

❖ We can claim the 22-page chunk and mark it as being used
by allocation C

46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Last allocation: someone allocates 1 page, what happens?

❖ We can claim the 1-page chunk and mark it as being used
by allocation D

47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B CD

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ First, allocation D is done and frees its page

48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B CD

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ First, allocation D is done and frees its page

❖ To free the page, we just mark it as no longer being
allocated. Nothing we can coalesce (yet)

49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

❖ Then we can coalesce!

❖ Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

❖ If both buddies are free, they can be combined ☺
51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

❖ Then we can coalesce!

❖ Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

❖ If both buddies are free, they can be combined ☺
52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Third, allocation C is done and frees its pages

53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B C

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Third, allocation C is done and frees its pages

❖ Can’t coalesce since its buddy is not completely free

54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

22 pages 22 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

❖ The newly coalesced chunk can be further coalesced!

57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 pages 23 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

❖ The newly coalesced chunk can be further coalesced!

❖ The newly coalesced chunk can be further coalesced!

58

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 pages

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ Buddy Algorithm can be maintained with a binary search
tree

▪ Each node carries
whether it is split,
allocated, or free

59

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

21 21 21 21 21 21 21 21

22 22 22 22

23 23

24

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ Since Buddy has a known max size, we can represent the
tree in an array or bitmap. (example shows up to 22 for
space)

60

20 20 20 20

21 21

22
22 21 21 20 20 20 20

22

21 21

20 20 20 20

(alternate way to show the array, may
make the connection between array and
tree easier to see).
Indexes go Left -> Right, top to bottom

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ The tree (array representation) is useful for coalescing,
but we can make algorithm faster by keeping track of
several free lists, roughly one list per size

▪ Quicker lookup for memory allocation

61

size

20

21

22

23

…

block block

block

block

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ How does the fragmentation for the buddy algorithm
look?

62

pollev.com/tqm

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm

❖ A bit restrictive in the interface, must be a power of 2

▪ Internal fragmentation can be a lot

▪ If someone needs 24 +1 pages, buddy algorithm will allocate 25
pages, 24 - 1 pages of fragmentation

❖ External fragmentation is generally kept pretty small

❖ Small allocations don’t really work for this

63

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Heap & Stack

❖ Fragmentation & Allocation Strategies

❖ Buddy Algorithm

❖ Slab Algorithm

64

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator

❖ What if we restrict the API to a single size that can be
allocated or freed?

❖ First, you need to allocate the thing you will allocate from

▪ When you create it, you specify a name and some other
information

▪ The thing we care about is that you specify the size of the
objects that the slab allocator will allocate from

65

// Internal to the OS, you can’t call it yourself

void * kmem_cache_alloc (const char* name, unsigned int size,

 unsigned int align, unsigned int flags);

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level

❖ In the context of a slab allocator

▪ Object: the thing we want to allocate, some fixed size memory
that we want to allocate
NOT the same as a java object

▪ Cache: a chunk of memory containing the “objects”

▪ Objects are in contiguous in memory, but still has links to keep
track of which objects are free

66

struct kmem_cache* s

Cache
metadata

object object object object object object object object

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ When we allocate from the cache, we get a pointer to the
first element that is free

67

struct kmem_cache* s

Cache
metadata

object object object object object object object object

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ When we allocate from the cache, we get a pointer to the
first element that is free

▪ Update the pointer to the next element once we alloc

68

struct kmem_cache* s

Cache
metadata

object object object object object object object object

Returned from the
alloc function

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ What happens when we run out of objects?

69

struct kmem_cache* s

Cache
metadata

object object object object object object object object

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ What happens when we run out of objects?

▪ Allocate a new slab for the cache (allocate from buddy)

❖ Each contagious chunk of memory is one “slab”, with the
slab usually being a size appropriate to ask from buddy

70

struct kmem_cache* s

Cache
metadata

object object object object object object object object

Cache
metadata

object object object object object object object object

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is the runtime for slab?

❖ How does the fragmentation look?

71

Discuss

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator Analysis

❖ Slab allocator is very useful for minimizing overhead for
allocating and freeing. A constant time algorithm

❖ Can be minimal internal and external fragmentation (gets
more complicated when you account for alignment and
buddy algo requirements)

72

CIS 3800, Fall 2023L10: Memory AllocationUniversity of Pennsylvania

Slab Allocator Usage

❖ Used on top of the buddy algorithm in the kernel.

▪ This allows us to use the buddy algorithm still, but can quickly
allocate smaller sized “objects” within the slabs of memory
returned by the buddy algorithm

❖ General Memory allocators may use something like this,
allocate many slabs of various sizes and try to mostly use
those for allocation

73

	Default Section
	Slide 1: Memory Allocation Computer Operating Systems, Fall 2023
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Stack & Heap
	Slide 7: Stack Example:
	Slide 8: Stack Example:
	Slide 9: Stack Example 1:
	Slide 10: Stack Example:
	Slide 11: Stack
	Slide 12: The Heap
	Slide 13: Free Lists
	Slide 14: Dynamic Memory Example
	Slide 15: Dynamic Memory Example
	Slide 16: Dynamic Memory Example
	Slide 17: Dynamic Memory Example
	Slide 18: Dynamic Memory Example
	Slide 19: Dynamic Memory Example
	Slide 20: Heap
	Slide 21: Lecture Outline
	Slide 22: Fragmentation
	Slide 23: External Fragmentation Example
	Slide 24: External Fragmentation Example
	Slide 25: External Fragmentation Example
	Slide 26: Internal Fragmentation
	Slide 27: First Fit
	Slide 28: Best Fit
	Slide 29: Worst Fit
	Slide 30: Poll: how are you?
	Slide 31: Poll: how are you?
	Slide 32: Poll: how are you?
	Slide 33: Poll: how are you?
	Slide 34: Poll: how are you?
	Slide 35: Lecture Outline
	Slide 36: Buddy Algorithm
	Slide 37: Buddy Algorithm walkthrough
	Slide 38: Buddy Algorithm walkthrough
	Slide 39: Buddy Algorithm walkthrough
	Slide 40: Buddy Algorithm walkthrough
	Slide 41: Buddy Algorithm walkthrough
	Slide 42: Buddy Algorithm walkthrough
	Slide 43: Buddy Algorithm walkthrough
	Slide 44: Buddy Algorithm walkthrough
	Slide 45: Buddy Algorithm walkthrough
	Slide 46: Buddy Algorithm walkthrough
	Slide 47: Buddy Algorithm walkthrough
	Slide 48: Buddy Algorithm walkthrough
	Slide 49: Buddy Algorithm walkthrough
	Slide 50: Buddy Algorithm walkthrough
	Slide 51: Buddy Algorithm walkthrough
	Slide 52: Buddy Algorithm walkthrough
	Slide 53: Buddy Algorithm walkthrough
	Slide 54: Buddy Algorithm walkthrough
	Slide 55: Buddy Algorithm walkthrough
	Slide 56: Buddy Algorithm walkthrough
	Slide 57: Buddy Algorithm walkthrough
	Slide 58: Buddy Algorithm walkthrough
	Slide 59: Buddy Algorithm Implementation
	Slide 60: Buddy Algorithm Implementation
	Slide 61: Buddy Algorithm Implementation
	Slide 62: Poll: how are you?
	Slide 63: Buddy Algorithm
	Slide 64: Lecture Outline
	Slide 65: Slab Allocator
	Slide 66: Slab Allocator High Level
	Slide 67: Slab Allocator High Level: Alloc
	Slide 68: Slab Allocator High Level: Alloc
	Slide 69: Slab Allocator High Level: Alloc
	Slide 70: Slab Allocator High Level: Alloc
	Slide 71: Poll: how are you?
	Slide 72: Slab Allocator Analysis
	Slide 73: Slab Allocator Usage

