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Administrivia

❖ Project 1 is out now

▪ Project is due 11:59 pm on Wed, Oct 11 (1 week from yesterday)
late deadline 11:59 pm on Sun, Oct 15

❖ For project 1 full submission, please do a group 
submission on gradescope (one of you submits but you 
add your partner to the submission)

❖ Midterm is coming soon (two weeks from now)

▪ Meyerson B1 7:00 pm to 9:00pm Thursday 10/19

▪ If you can’t make the time, please send me an email

2



CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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pollev.com/tqm
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Poll: how are you?

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 
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Discuss

e.g. if I have sequence [5, 9, 23] and I randomly 
generate 12, I will insert 12 between 9 and 23
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Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes
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Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

6
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Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to 
access

▪ We see this already with registers. Data in registers is stored on 
the chip and is faster to access than registers
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Memory Hierarchy

8

Each layer can be thought 

of as a “cache” of the layer 

below
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Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space 
goes up, but access times increase

9
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Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on 
performance

▪ It is important that data is quick to access to get better CPU 
utilization 10
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Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, 
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the 
storage of data for increased performance. Data is usually 
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be 
stored on disk. (Instead of going to disk, we can go to physical 
memory which is quicker to access)

11
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Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data 
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish 
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https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
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Cache Performance

❖ Accessing data in the cache allows for much better 
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: 
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

13
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Cache Lines

❖ Imagine memory as a big array of data:

❖ Just like we did with pages, we can split these into 64-byte 
“lines” or “blocks”(64 bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole 
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
14

Access this data
Neighboring data brought into the cache
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Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines 
inside it.

❖ When we access data not in the cache, and the cache is 
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on 
the address to determine which entry in the cache we can 
store it in. (Depending on architecture, 1 to 12 possible 
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the 
entries a line can be stored in

15
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Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

16
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ ArrayList In C++:

17

int main() {

  vector<int> array_list {1, 2, 3};

  // … 

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data = 

1 2 3

stack:
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ LinkedList In C++:
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int main() {

  list<int> linked_list {1, 2, 3, 4};

  // … 

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail = 

head = 

stack:
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Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from 
spatial complexity (and temporal complexity from being iterated 
through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your 
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best 
bet is to experiment try all options and analyze which is better.

19
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What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, 
you have an instance of that object. If you declare it as a 
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the 
memory model is slightly different. Instead, all object 
variables are object references, that refer to an object 
on the heap

20
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ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object 
variables are object references, that refer to an object on 
the heap

21

public class MemoryModel {

  public static void main(String[] args) {

  ArrayList l = new ArrayList({1, 2, 3}); 

   // … 

  }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data = 

1

2

3
heap:

stack:
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Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

22
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

23

Discuss

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

24

Discuss

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4
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Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take 
advantage of the cache

25
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Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches 
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D 

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in 
inheritance

26

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 27

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> l = new ArrayList<A>(); 

    // … 

    for (A item : l) {

       item.compute();

    }

  }

}

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

28

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> la = new ArrayList<A>();

    ArrayList<B> lb = new ArrayList<B>(); 

    ArrayList<C> lc = new ArrayList<C>(); 

    // … 

    for (A item : la) {

       item.compute();

    }

    for (B item : lb) {

       item.compute();

    }

    for (C item : lc) {

       item.compute();

    }

  }

}
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Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

29
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Introducing Threads

❖ Separate the concept of a process from the “thread of 
execution” 

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream 
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

30

thread
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it

31
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Threads vs. Processes

32

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()
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Threads vs. Processes

33

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild
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Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can 
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared 
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

34
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Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running 
in the address space

• One PC, stack, SP

▪ That main thread invokes a 
function to create a new thread

• Typically pthread_create()

35

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent
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Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running 
in the address space

• Original thread (parent) and new 
thread (child)

• New stack created for child thread

• Child thread has its own values of 
the PC and SP

▪ Both threads share the other 
segments (code, heap, globals)

• They can cooperatively modify 
shared data

36

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild
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Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

37
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POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread 
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

38
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Creating and Terminating Threads

❖  

▪ Creates a new thread into *thread, with attributes *attr 
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check 
against error constants)

▪ The new thread runs start_routine(arg)

39

int pthread_create(

        pthread_t* thread,

        const pthread_attr_t* attr,

        void* (*start_routine)(void*), 

        void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer! 

Takes & returns void* 

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create
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What To Do After Forking Threads?

❖  

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

40

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child 

thread to exit, gets the child’s 

return value, and child thread is 

cleaned up

start_routine

continues

parentcreate join
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Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

41
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Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

42
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Threads vs. Processes

43

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()
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Threads vs. Processes

44

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild
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Poll: how are you?

❖ What does this print?

45

Discuss
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Poll: how are you?

❖ What does this print?

46

Discuss
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Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a 
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in 
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda 
unsafe if done wrong (we are doing it wrong in this 
example), more on this in the second half of the 
semester

47
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Process Isolation

❖ Process Isolation is a set of mechanisms implemented to 
protect processes from each other and protect the kernel 
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

48
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Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

49
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Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the 
matrix to check!

▪ Works with threads since they share memory

50

Diminishing returns

After 4 threads, no 

gain in speed

why? Machine run on

only has 4 cores
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How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on 
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

51
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Context Switching

❖ Processes are considered “more expensive” than threads. 
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context 
switching

▪ Cannot easily share memory between processes – typically 
communicate through the file system

52
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