
CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Caches & threads
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Administrivia

❖ Project 1 is out now

▪ Project is due 11:59 pm on Wed, Oct 11 (1 week from yesterday)
late deadline 11:59 pm on Sun, Oct 15

❖ For project 1 full submission, please do a group
submission on gradescope (one of you submits but you
add your partner to the submission)

❖ Midterm is coming soon (two weeks from now)

▪ Meyerson B1 7:00 pm to 9:00pm Thursday 10/19

▪ If you can’t make the time, please send me an email

2

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

4

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

5

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

6

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to
access

▪ We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

7

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Memory Hierarchy

8

Each layer can be thought

of as a “cache” of the layer

below

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

9

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on
performance

▪ It is important that data is quick to access to get better CPU
utilization 10

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be
stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

11

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

12

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck:
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

13

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ Just like we did with pages, we can split these into 64-byte
“lines” or “blocks”(64 bytes on most architectures)

▪ This means bottom 6 bits of an address are the offset into a line

▪ The top 58 bits of the address specify the “line” number

❖ When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!
14

Access this data
Neighboring data brought into the cache

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines
inside it.

❖ When we access data not in the cache, and the cache is
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on
the address to determine which entry in the cache we can
store it in. (Depending on architecture, 1 to 12 possible
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the
entries a line can be stored in

15

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

16

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ ArrayList In C++:

17

int main() {

 vector<int> array_list {1, 2, 3};

 // …

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ LinkedList In C++:

18

int main() {

 list<int> linked_list {1, 2, 3, 4};

 // …

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from
spatial complexity (and temporal complexity from being iterated
through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best
bet is to experiment try all options and analyze which is better.

19

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object,
you have an instance of that object. If you declare it as a
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the
memory model is slightly different. Instead, all object
variables are object references, that refer to an object
on the heap

20

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object
variables are object references, that refer to an object on
the heap

21

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

22

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

23

Discuss

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

24

Discuss

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take
advantage of the cache

25

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in
inheritance

26

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 27

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

28

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> la = new ArrayList<A>();

 ArrayList lb = new ArrayList();

 ArrayList<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

29

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

30

thread

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

31

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads vs. Processes

32

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads vs. Processes

33

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

34

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

35

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

36

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

37

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

38

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

39

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

40

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

41

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Intro to Caches

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

42

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads vs. Processes

43

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Threads vs. Processes

44

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

45

Discuss

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

46

Discuss

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda
unsafe if done wrong (we are doing it wrong in this
example), more on this in the second half of the
semester

47

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

48

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

49

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the
matrix to check!

▪ Works with threads since they share memory

50

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

51

CIS 3800, Fall 2023L11: Caches & ThreadsUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads.
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

52

	Default Section
	Slide 1: Caches & threads Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Answer:
	Slide 7: Data Access Time
	Slide 8: Memory Hierarchy
	Slide 9: Memory Hierarchy so far
	Slide 10: Processor Memory Gap
	Slide 11: Cache
	Slide 12: Cache vs Memory Relative Speed
	Slide 13: Cache Performance
	Slide 14: Cache Lines
	Slide 15: Cache Replacement Policy
	Slide 16: Back to the Poll Questions
	Slide 17: Data Structure Memory Layout
	Slide 18: Data Structure Memory Layout
	Slide 19: Poll Question: Explanation
	Slide 20: What about other languages?
	Slide 21: ArrayList in Java Memory Model
	Slide 22: Does Caching apply to Java?
	Slide 23: Poll: how are you?
	Slide 24: Poll: how are you?
	Slide 25: Experiment Results
	Slide 26: Instruction Cache
	Slide 27: Instruction Cache
	Slide 28: Instruction Cache
	Slide 29: Lecture Outline
	Slide 30: Introducing Threads
	Slide 31: Threads vs. Processes
	Slide 32: Threads vs. Processes
	Slide 33: Threads vs. Processes
	Slide 34: Threads
	Slide 35: Single-Threaded Address Spaces
	Slide 36: Multi-threaded Address Spaces
	Slide 37: Lecture Outline
	Slide 38: POSIX Threads (pthreads)
	Slide 39: Creating and Terminating Threads
	Slide 40: What To Do After Forking Threads?
	Slide 41: Thread Example
	Slide 42: Lecture Outline
	Slide 43: Threads vs. Processes
	Slide 44: Threads vs. Processes
	Slide 45: Poll: how are you?
	Slide 46: Poll: how are you?
	Slide 47: Demos:
	Slide 48: Process Isolation
	Slide 49: Parallelism
	Slide 50: Parallelism
	Slide 51: How fast is fork()?
	Slide 52: Context Switching

