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Administrivia

❖ Project 1 is out now

▪ Project is due 11:59 pm on Wed, Oct 11 (TOMORROW)
late deadline 11:59 pm on Sun, Oct 15

❖ For project 1 full submission, please do a group 
submission on gradescope (one of you submits but you 
add your partner to the submission)

❖ Recitation Today after lecture:

▪ Some cool stuff ☺ and then Open Office Hours Afterwards

❖ Travis has Office hours 4:30 to 6:30

▪ And will host more office hours tomorrow night 2
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Administrivia

❖ Midterm is coming soon (1 week + 2 days from now!)

▪ Meyerson B1 7:00 pm to 9:00pm Thursday 10/19

▪ If you can’t make the time, please send me an email ASAP

❖ Midterm Policies posted on the course website. Please 
read through them.

▪ You are allowed 1 page of notes 8.5 x 11 double sided notes

▪ Clobber policy: can show growth by doing better on the second 
midterm

❖ Recitation next week and lectures next week will contain 
midterm review

▪ Tuesday lecture will warp up scheduling, not only review 3
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm
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Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

5
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it

6
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Threads vs. Processes
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Threads vs. Processes

8
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Process Isolation

❖ Process Isolation is a set of mechanisms implemented to 
protect processes from each other and protect the kernel 
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

9
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How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on 
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

10
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Context Switching

❖ Processes are considered “more expensive” than threads. 
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context 
switching

▪ Cannot easily share memory between processes – typically 
communicate through the file system

11
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Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

12
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Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the 
matrix to check!

▪ Works with threads since they share memory

13

Diminishing returns

After 4 threads, no 

gain in speed

why? Machine run on

only has 4 cores

Other programs 

running, that may 

use the cores
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Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

14
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Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

15
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Search Engine Architecture

16
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Search Engine (Pseudocode)

17

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextQuery();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    Display(results);

  }

}

Disk I/O

Network 

I/O

Network 

I/O
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Execution Timeline: a Multi-Word Query
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

19
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Execution Timeline: To Scale
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Multiple (Single-Word) Queries
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Uh-Oh (1 of 2)

22
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Uh-Oh (2 of 2)
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast 
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

24
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A Concurrent Implementation 

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests 
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between 
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

25

Threads!!!!
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Multithreaded Server

26
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Multithreaded Server

27

client

server

pthread_create()

pthread_detach()
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server

30
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Multi-threaded Search Engine (Execution)
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

32
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Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

33
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Kernel Level Threads

❖ When the pthread library creates a new thread, it 
registers the new thread with the kernel

▪ The new thread is stored similar to how a new process gets a new 
PCB

❖ The kernel knows about the new thread and schedules 
the thread for us

❖ Despite the name, the thread still runs in user space

❖ This is the default for pretty much every language

34
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User Level Threads

❖ Instead of having the kernel manage threads and schedule 
them, we instead have the user program do this?

▪ There is still a single OS thread, you can think of it as being 
“shared” among user level threads.

❖ In languages with a runtime (like Java), the runtime 
environment can switch between threads for us

❖ In C, you must switch between threads manually if you 
want to manage them in user land

▪ Or use some user level threading library

▪ You will sort of be implementing PennOS using user-level threads

35
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Threading Models

❖ The “kernel level threads” approach can be called 1:1

▪ For each thread we create, it is backed by the operating system, is 
run & scheduled by the operating system, and can be run in 
parallel

❖ The “User level threads” approach can be called N:1

▪ The kernel sees the process as containing a singular thread that is 
scheduled and run as normal.

▪ The program decides which user level thread is the one running 
and when to swap to another user level thread

• This all happens while the kernel is scheduling the “1 thread” as if it is 
any other thread

36
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Hybrid Threading

❖ Can instead have a model that is M:N

▪ Create M user level threads that share N threads of execution 
maintained by the operating system

▪ Not too common

▪ Rather complex to implement yourself

▪ Neat Idea ☺

37
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Pros & Cons of user level threads

❖ Pros

▪ Less Operating System Overhead

▪ Can customize scheduler more easily

▪ If a system did not support multi threading, you can do this

❖ Cons

▪ If a thread blocks on I/O or page fault, all user level threads

▪ If you need to make sure threads share time, hard to do this 
without pre-emption through the kernel or some time-based 
signal

38
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Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next
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Two ways of switching between “Threads”

❖ There are two main ways we switch between threads.

❖ The most common way is to be “pre-empted”, to be 
interrupted, which then switches threads on the 
interruption

❖ An alternative is “cooperative”, a thread willingly gives up 
execution to someone else.

▪ ucontext does something like this, but in PennOS we will emulate 
pre-emption

40



CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

ucontext

❖  ucotntext struct

▪ Stores information about an execution context. 
• uc_sigmask stores the signal mask of the context
• uc_stack points to the stack used by that context
• uc_link points to the context that will be resumed when the context 

represented by the struct returns. NULL if we just want the process to 
exit.

• Stores some other information that is machine & architecture 
specific. E.g. registers and their values

41

typedef struct ucontext_t {

  struct uctonext_t *uc_link;

  sigset_t          uc_sigmask;

  stack_t            uc_stack;

  // other machine specific stuff

} ucotnext_t;
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Getcontext & setcontext

❖  ucotntext struct

▪ Initializes the ucontext_t struct pointed at by ucp to have the 
currently active context.

▪ Specifically, the context of what the calling thread would look like 
right after getcontext returns

❖ Setcontext

▪ Sets the current executing context to the one specified by ucp

▪ Does not return on success, sorta like exec

42

int getcontext(ucontext * ucp);

int setcontext(const context * ucp);
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❖ What does this code do?

43

pollev.com/tqm
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Getcontext & setcontext

❖  ucotntext struct

▪ Modifies a context (which you got from getcontext) 

• Will now call the function specified by func when context is run

▪ Need to allocate a new stack for the context beforehand

▪ can set new signal mask and/or uc_link

❖ Setcontext

▪ Like setcontext, but stores the context of the caller into oucp

44

int makecontext(ucontext * ucp, void (*func)(), 

          int argc, ...);

int swapcontext(ucontext_t *oucp, const context *ucp);

More on this in the PennOS Demo
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❖ What does this code do?

45

pollev.com/tqm
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Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

46
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OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling threads

▪ Choosing which one to run

▪ Deciding how long to run it

47
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Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what 
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when 
it can take user input

▪ Etc…

48
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Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict 
49
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Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures 

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

50
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Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run 
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given 
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

51
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First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until 
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes 
unblocked

▪ The thread at the front of the queue is the next to run

52
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Example of FCFS

53

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
      |  Job 1                |  Job 2  |  Job 3  |

     0                      24        27        30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2
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❖ What are the advantages/disadvantages/concerns with
First Come First Serve

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 54

pollev.com/tqm



CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the 
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their 
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till 
completion

56
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Example of SJF

57

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
      | Job 2 | Job 3  |  Job 1                |  

   0       3        6                       30

❖ Total waiting time: 6 + 0 + 3  = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2
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❖ What are the advantages/disadvantages/concerns with
Shortest Job First

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 58

pollev.com/tqm
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Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run 
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given 
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

60
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Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only led it run for a fixed amount of time (quantum). 

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the 
queue.
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Example of Round Robin

62

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
      |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| …    |Job 1|

   0     2     4    6     8   9   10    12,14…       30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3)  = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)
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❖ What are the advantages/disadvantages/concerns with
Round Robin

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 63

pollev.com/tqm
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More

❖ More next lecture

65
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