
CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Threads & Scheduling
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Administrivia

❖ Project 1 is out now

▪ Project is due 11:59 pm on Wed, Oct 11 (TOMORROW)
late deadline 11:59 pm on Sun, Oct 15

❖ For project 1 full submission, please do a group
submission on gradescope (one of you submits but you
add your partner to the submission)

❖ Recitation Today after lecture:

▪ Some cool stuff ☺ and then Open Office Hours Afterwards

❖ Travis has Office hours 4:30 to 6:30

▪ And will host more office hours tomorrow night 2

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Administrivia

❖ Midterm is coming soon (1 week + 2 days from now!)

▪ Meyerson B1 7:00 pm to 9:00pm Thursday 10/19

▪ If you can’t make the time, please send me an email ASAP

❖ Midterm Policies posted on the course website. Please
read through them.

▪ You are allowed 1 page of notes 8.5 x 11 double sided notes

▪ Clobber policy: can show growth by doing better on the second
midterm

❖ Recitation next week and lectures next week will contain
midterm review

▪ Tuesday lecture will warp up scheduling, not only review 3

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

5

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

6

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Threads vs. Processes

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

StackchildTHREADS

SHARE

MEMROY

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

9

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

10

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads.
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

11

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

12

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the
matrix to check!

▪ Works with threads since they share memory

13

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

Other programs

running, that may

use the cores

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

14

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

15

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Search Engine Architecture

16

query
processor

client
index

file

index
file

index
file

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Search Engine (Pseudocode)

17

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextQuery();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 Display(results);

 }

}

Disk I/O

Network

I/O

Network

I/O

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Execution Timeline: a Multi-Word Query

18

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

19

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Execution Timeline: To Scale

20

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multiple (Single-Word) Queries

21

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
#.f -> Display()

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Uh-Oh (1 of 2)

22

query
processor

client

client

client

client

client

index
file

index
file

index
file

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Uh-Oh (2 of 2)

23

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

24

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

25

Threads!!!!

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multithreaded Server

26

client

server

accept()

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multithreaded Server

27

client

server

pthread_create()

pthread_detach()

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multithreaded Server

28

client

server

accept()

client

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multithreaded Server

29

client

client

server

pthread_create()

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multithreaded Server

30

client

client

client

client

client

client
server

shared
data

structures

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

31

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

32

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

33

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Kernel Level Threads

❖ When the pthread library creates a new thread, it
registers the new thread with the kernel

▪ The new thread is stored similar to how a new process gets a new
PCB

❖ The kernel knows about the new thread and schedules
the thread for us

❖ Despite the name, the thread still runs in user space

❖ This is the default for pretty much every language

34

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

User Level Threads

❖ Instead of having the kernel manage threads and schedule
them, we instead have the user program do this?

▪ There is still a single OS thread, you can think of it as being
“shared” among user level threads.

❖ In languages with a runtime (like Java), the runtime
environment can switch between threads for us

❖ In C, you must switch between threads manually if you
want to manage them in user land

▪ Or use some user level threading library

▪ You will sort of be implementing PennOS using user-level threads

35

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Threading Models

❖ The “kernel level threads” approach can be called 1:1

▪ For each thread we create, it is backed by the operating system, is
run & scheduled by the operating system, and can be run in
parallel

❖ The “User level threads” approach can be called N:1

▪ The kernel sees the process as containing a singular thread that is
scheduled and run as normal.

▪ The program decides which user level thread is the one running
and when to swap to another user level thread

• This all happens while the kernel is scheduling the “1 thread” as if it is
any other thread

36

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Hybrid Threading

❖ Can instead have a model that is M:N

▪ Create M user level threads that share N threads of execution
maintained by the operating system

▪ Not too common

▪ Rather complex to implement yourself

▪ Neat Idea ☺

37

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Pros & Cons of user level threads

❖ Pros

▪ Less Operating System Overhead

▪ Can customize scheduler more easily

▪ If a system did not support multi threading, you can do this

❖ Cons

▪ If a thread blocks on I/O or page fault, all user level threads

▪ If you need to make sure threads share time, hard to do this
without pre-emption through the kernel or some time-based
signal

38

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Two ways of switching between “Threads”

❖ There are two main ways we switch between threads.

❖ The most common way is to be “pre-empted”, to be
interrupted, which then switches threads on the
interruption

❖ An alternative is “cooperative”, a thread willingly gives up
execution to someone else.

▪ ucontext does something like this, but in PennOS we will emulate
pre-emption

40

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

ucontext

❖ ucotntext struct

▪ Stores information about an execution context.
• uc_sigmask stores the signal mask of the context
• uc_stack points to the stack used by that context
• uc_link points to the context that will be resumed when the context

represented by the struct returns. NULL if we just want the process to
exit.

• Stores some other information that is machine & architecture
specific. E.g. registers and their values

41

typedef struct ucontext_t {

 struct uctonext_t *uc_link;

 sigset_t uc_sigmask;

 stack_t uc_stack;

 // other machine specific stuff

} ucotnext_t;

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Getcontext & setcontext

❖ ucotntext struct

▪ Initializes the ucontext_t struct pointed at by ucp to have the
currently active context.

▪ Specifically, the context of what the calling thread would look like
right after getcontext returns

❖ Setcontext

▪ Sets the current executing context to the one specified by ucp

▪ Does not return on success, sorta like exec

42

int getcontext(ucontext * ucp);

int setcontext(const context * ucp);

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

❖ What does this code do?

43

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Getcontext & setcontext

❖ ucotntext struct

▪ Modifies a context (which you got from getcontext)

• Will now call the function specified by func when context is run

▪ Need to allocate a new stack for the context beforehand

▪ can set new signal mask and/or uc_link

❖ Setcontext

▪ Like setcontext, but stores the context of the caller into oucp

44

int makecontext(ucontext * ucp, void (*func)(),

 int argc, ...);

int swapcontext(ucontext_t *oucp, const context *ucp);

More on this in the PennOS Demo

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

❖ What does this code do?

45

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Lecture Outline

❖ Threads vs processes

❖ Threads & Blocking

❖ User Level Threads vs Kernel Level Threads
▪ ucontext

❖ Scheduling

46

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling threads

▪ Choosing which one to run

▪ Deciding how long to run it

47

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when
it can take user input

▪ Etc…

48

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict
49

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

50

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

51

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes
unblocked

▪ The thread at the front of the queue is the next to run

52

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Example of FCFS

53

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 1 | Job 2 | Job 3 |

 0 24 27 30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
First Come First Serve

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 54

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till
completion

56

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Example of SJF

57

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 2 | Job 3 | Job 1 |

 0 3 6 30

❖ Total waiting time: 6 + 0 + 3 = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Shortest Job First

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 58

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

60

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only led it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the
queue.

61

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

Example of Round Robin

62

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
 |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| … |Job 1|

 0 2 4 6 8 9 10 12,14… 30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3) = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Round Robin

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 63

pollev.com/tqm

CIS 3800, Fall 2023L12: Threads & SchedulingUniversity of Pennsylvania

More

❖ More next lecture

65

	Default Section
	Slide 1: Threads & Scheduling Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Process Isolation
	Slide 10: How fast is fork()?
	Slide 11: Context Switching
	Slide 12: Parallelism
	Slide 13: Parallelism
	Slide 14: Lecture Outline
	Slide 15: Building a Web Search Engine
	Slide 16: Search Engine Architecture
	Slide 17: Search Engine (Pseudocode)
	Slide 18: Execution Timeline: a Multi-Word Query
	Slide 19: What About I/O-caused Latency?
	Slide 20: Execution Timeline: To Scale
	Slide 21: Multiple (Single-Word) Queries
	Slide 22: Uh-Oh (1 of 2)
	Slide 23: Uh-Oh (2 of 2)
	Slide 24: Sequential Can Be Inefficient
	Slide 25: A Concurrent Implementation
	Slide 26: Multithreaded Server
	Slide 27: Multithreaded Server
	Slide 28: Multithreaded Server
	Slide 29: Multithreaded Server
	Slide 30: Multithreaded Server
	Slide 31: Multi-threaded Search Engine (Execution)
	Slide 32: Why Threads?
	Slide 33: Lecture Outline
	Slide 34: Kernel Level Threads
	Slide 35: User Level Threads
	Slide 36: Threading Models
	Slide 37: Hybrid Threading
	Slide 38: Pros & Cons of user level threads
	Slide 39: Interrupts
	Slide 40: Two ways of switching between “Threads”
	Slide 41: ucontext
	Slide 42: Getcontext & setcontext
	Slide 43
	Slide 44: Getcontext & setcontext
	Slide 45
	Slide 46: Lecture Outline
	Slide 47: OS as the Scheduler
	Slide 48: Scheduler Terminology
	Slide 49: Goals
	Slide 50: Scheduling: Other Considerations
	Slide 51: Types of Scheduling Algorithms
	Slide 52: First Come First Serve (FCFS)
	Slide 53: Example of FCFS
	Slide 54
	Slide 56: Shortest Job First (SJF)
	Slide 57: Example of SJF
	Slide 58
	Slide 60: Types of Scheduling Algorithms
	Slide 61: Round Robin
	Slide 62: Example of Round Robin
	Slide 63
	Slide 65: More

