
CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Scheduling & File System Intro
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Administrivia

❖ Mid Semester Feedback Survey Releases Tonight!

▪ Is anonymous, but as a result is on canvas 

▪ Lots of questions and opportunities to give long answers.
Your answers will help us shape the course for future semesters

▪ As long as you submit you should get the credit

▪ Worth about 1 check-in, no penalty for not doing it. Can think of it
as a “make-up” check-in?

❖ PennOS specification released!

▪ Milestone 0 due in ~1 week

• It is just making sure you have a group, read the specification,
understand ucontext, and have a rough plan :P

▪ Milestone 1 is due in ~2-ish weeks

▪ Whole thing due in (~1 month) 2

(We are modifying the due dates)

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Administrivia

❖ Recitation After lecture will be preparing you for PennOS
and refreshing you on Makefiles

❖ Lecture today will be scheduling and a brief intro to File
Systems. The goal is to introduce you enough to have a
vague understanding of what to do for PennOS.

❖ Lecture on Thursday will be entirely a PennOS TA
demonstration presentation.

▪ Please read the specification and review this lecture, come to
class with questions

3

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Administrivia

❖GROUPS MUST BE MADE BY
THE END OF SATURDAY
▪ Same canvas group sign-up steps as before. Should be an ed

post about it.

▪ Submit to gradescope to make a repository

▪ remaining people will be randomly assigned partners

❖MILESTONE 0 IS DUE Friday
11/3 @ MIDNIGHT

4

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

5

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Lecture Outline

❖ Scheduling

▪ FCFS

▪ SJF

▪ RR

▪ RR Variants

❖ Intro to File System

❖ Disk Allocation

▪ Contiguous

▪ Linked List

▪ FAT

6

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling threads

▪ Choosing which one to run

▪ Deciding how long to run it

7

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when
it can take user input

▪ Etc…

8

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict
9

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

10

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

11

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes
unblocked

▪ The thread at the front of the queue is the next to run

12

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Example of FCFS

13

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 1 | Job 2 | Job 3 |

 0 24 27 30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
First Come First Serve

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 14

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

FCFS Analysis

❖ Advantages:

▪ Simple, low overhead

▪ Hard to screw up the implementation

▪ Each thread will DEFINITELY get to run eventually.

❖ Disadvantages

▪ Doesn’t work well for interactive systems

▪ Throughput can be low due to long threads

▪ Large fluctuations in average turn around time

▪ Priority not taken into considerations

15

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till
completion

16

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Example of SJF

17

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
 | Job 2 | Job 3 | Job 1 |

 0 3 6 30

❖ Total waiting time: 6 + 0 + 3 = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Shortest Job First

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 18

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

20

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only led it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the
queue.

21

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Example of Round Robin

22

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
 |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| … |Job 1|

 0 2 4 6 8 9 10 12,14… 30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3) = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Round Robin

❖ Things a scheduler should prioritize:

▪ Minimizing wait time

▪ Minimizing Latency

▪ Maximizing fairness

▪ Maximizing throughput

▪ Task priority

▪ Cost to schedule things

▪ Cost to context Switch

❖ Imagine we have 1 core, and tasks of various lengths… 23

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Round Robin Analysis

❖ Advantages:

▪ Still relatively simple

▪ Can works for interactive systems

❖ Disadvantages

▪ If quantum is too small, can spend a lot of time context switching

▪ If quantum is too large, approaches FCFS

▪ Still assumes all processes have the same priority.

❖ Rule of thumb:

▪ Choose a unit of time so that most jobs (80-90%) finish in one
usage of CPU time

24

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

RR Variant: PennOS Scheduler

❖ In PennOS you will have to implement a priority scheduler
based mostly off of round robin.

❖ You will have 3 queues, each with a different priority
(-1, 0, 1)

▪ Each queue acts like normal round robin within the queue

❖ You spend time quantum processing each queue
proportional to the priority

▪ Priority -1 is scheduled 1.5 times more often than priority 0

▪ Priority 0 is scheduled 1.5 times more often than priority 1

25

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

RR Variant: Priority Round Robin

❖ Same idea as round robin, but with multiple queues for
different priority levels.

❖ Scheduler chooses the first item in the highest priority
queue to run

❖ Scheduler only schedules items in lower priorities if all
queues with higher priority are empty.

26

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

RR Variant: Multi Level Feedback

27

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority,
giving shorter threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

28

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation
that decide which queue it starts in

▪ E.g. the scheduler should have higher priority than
HelloWorld.java

❖ Update the priority based on recent CPU usage rather
than overall cpu usage of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

29

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Why did we talk about this?

❖ Scheduling is fundamental towards how computer can
multi-task

❖ This is a great example of how “systems” intersects with
algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause
a priority inversion, potentially causing serious errors.

30

What really happened on Mars Rover Pathfinder, Mike Jones.
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

31

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Etc.
32

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Lecture Outline

❖ Scheduling

▪ FCFS

▪ SJF

▪ RR

▪ RR Variants

❖ Intro to File System

❖ Disk Allocation

▪ Contiguous

▪ Linked List

▪ FAT

33

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

File System: User Level STD API

❖ C stdio API: core functionalities

▪ fopen

▪ D

▪ Fwrite

▪ Fclose

❖ These core functionality of these functions should be self-
explanatory. If you need to use these, use man pages to
lookup the exact details

34

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

int fclose(FILE *stream);

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

File System: User Level STD API again

❖ C stdio API: core functionalities

▪ fopen

▪ D

▪ Fwrite

▪ Fclose

❖ In addition to the above, we also have another common
feature: moving to an arbitrary position in the file

35

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

int fclose(FILE *stream);

int fseek(FILE *stream, long offset, int whence);

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

36

A N A R C H Y i s a w o r d w h

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

37

A N A R C H Y i s a w o r d w h

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

38

A N A R C H Y i s a w o r d w h

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

❖ This is not just a C thing; this is probably what you have
done in Java and other languages.

39

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ The stream model is very convenient for user level
programs to access files. How data is stored on disk is
more complicated

▪ File data is not necessarily contiguous in hardware.

❖ Files can be broken up into units called blocks

▪ Blocks are a fixed-size of contiguous bytes in the disk.

▪ When the operating system interfaces with hardware, it works in
terms of blocks.

▪ When the OS operates on a file, it reads/writes an entire block at
a time

40

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ User perspective: A sequence of bytes

❖ More details: these bytes are broken up into a series of
logical blocks

41

A N A R C H Y i s a w o r d w h i c h c o m e

A N A R C H Y i s a w o r d w h i c h c o m e

0th Block

for this file

1st Block

for this file

2nd Block

for this file

3rd Block

for this file

Byte 0

Byte 1

Byte 2

Block numbers are not 0, 1, 2 3. More on this in a few slides

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

High Level: View

❖ A file is a sequence of bytes that can be split into blocks

❖ Disk can be thought of as an array of physical blocks that
contain file blocks, metadata or are empty

❖ The file system allocates blocks to files and translates
from a “logical” block number to a physical block number

42

Block 0 Block 1 Block 2 Block 3 Block 4Logical File:

EMPTY Block 0 Block 1 Block 2 Block 3 Block 4 Block 0*

PB 0 PB 1 PB 2 PB 3 PB 4 PB 5 PB 6

Physical Disk:

(block 0 for
another file)

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

High Level: View

❖ A file is a sequence of bytes that can be split into blocks

❖ Disk can be thought of as an array of physical blocks that
contain file blocks, metadata or are empty

❖ Note: blocks that are logically next to each other in a file
may not be contiguous in hardware

43

Block 0 Block 1 Block 2 Block 3 Block 4Logical File:

Block 1 EMPTY Block 3 Block 2 Block 0 Block 4 EMPTY

PB 0 PB 1 PB 2 PB 3 PB 4 PB 5 PB 6

Physical Disk:

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Operating System Perspective: Hardware

44

app
shell
cmds

FS

Device
Driver Disk

Controller

<file, offset>

#Block

#Block

physical
location

partition

Meta-
data

directory

data

User level applications talk to the OS by specifying
a file and think in terms of an offset into the file

QUICK PERSPECTIVE TO GET YOU
READY FOR PENNOS, SLIGHLY
MORE DETAIL ANOTHER LECTURE

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Operating System Perspective: Hardware

45

app
shell
cmds

FS

Device
Driver Disk

Controller

<file, offset>

#Block

#Block

physical
location

partition

Meta-
data

directory

data

User level applications talk to the OS by specifying
a file and think in terms of an offset into the file

The file system translates
offset to a physical block
number and can request
that block from hardware

QUICK PERSPECTIVE TO GET YOU
READY FOR PENNOS, SLIGHLY
MORE DETAIL ANOTHER LECTURE

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Operating System Perspective: Hardware

46

app
shell
cmds

FS

Device
Driver Disk

Controller

<file, offset>

#Block

#Block

physical
location

partition

Meta-
data

directory

data

User level applications talk to the OS by specifying
a file and think in terms of an offset into the file

The file system translates
offset to a physical block
number and can request
that block from hardware

QUICK PERSPECTIVE TO GET YOU
READY FOR PENNOS, SLIGHLY
MORE DETAIL ANOTHER LECTURE

Hardware will find the physical
location and read/write the data.
Interrupt the OS when it is done

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Block Size

❖ The Block size is dependent on hardware and some file
systems can have multiple different block sizes

❖ Typically, 2Kib – 16KiB in size

❖ Tradeoff in size:

▪ If blocks are small, then we need to go to disk more often

▪ If block sizes are too big, then we may have more internal
fragmentation. (e.g., a file containing the letters “hi” will take up
more space)

47

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Memory Hierarchy (again)

48

Files systems are really

really really slow compared

to accessing memory

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Seek Time

❖ To seek in a file is to move to a different position in the
file. If we want to move from one place on the hardware
to another, that takes a VERY long time (relatively)

❖ HDD (Hard Disk Drives) consist of a spinning disk and an
arm that hovers over the disk to read data

❖ Video: https://yewtu.be/watch?v=p-JJp-oLx58

▪ Start at 6:48 ish

❖ Since this is a physical operation,
much slower (relatively) than
electronic operations

49

https://yewtu.be/watch?v=p-JJp-oLx58

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

HDD vs SSD

❖ SSD’s (Solid State Drives) are another piece of hardware
that is gaining a lot of popularity

❖ Compare to HDDs

▪ Much faster read & seek time

▪ Lower energy requirements

▪ Smaller

▪ Etc.

❖ Downsides:

▪ HDD’s are still cheaper per bit than SSD

▪ SDD’s degrade quicker on reads & writes.
50

HDD’s are still ~80-90% of what
data centers use to store data

Personal & Mobile devices use
SSD, they are really nice ☺

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Lecture Outline

❖ Scheduling

▪ FCFS

▪ SJF

▪ RR

▪ RR Variants

❖ Intro to File System

❖ Disk Allocation

▪ Contiguous

▪ Linked List

▪ FAT

51

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Disk vs Memory Allocation

❖ Disk and memory allocation looks very similar

❖ Big difference:

▪ Disk access speed is different than memory accesses.
Memory has quick random access, while disk needs to seek to the
correct position first

▪ Access pattern for Disk can be different than Memory

❖ Same goals:

▪ Fast sequential & Random Access

▪ Minimize fragmentation

▪ Be able to extend files when needed

52

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Contiguous Allocation

❖ Each file occupies a contiguous region of blocks

▪ Fast random access (only one seek to the beginning needed)

❖ Useful when read-only devices or small devices

▪ CD-ROMs, DVD-ROMs and other optical media

▪ Embedded/personal devices

❖ Management is easy but inflexible

▪ Directory entry of a file needs to specify its size and start location

53

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Contiguous Allocation

❖ Fragmentation is a problem if deletes are allowed, or if
files grow to need more space

❖ After disk is full, new files need to fit into any “holes”

▪ Requires advanced declaration of size at the time of creation

54

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

(a) Contiguous allocation of disk space for 7 files

(b) The state of the disk after files D and F have been removed

Fragmentation after the deletes. If I wanted to allocate a file of size 8, I couldn’t
without rearranging file allocations

Contiguous Allocation

…

File A
(4 blocks)

File C
(6 blocks)

File E
(12 blocks)

File G
(3 blocks)

File B
(3 blocks)

File D
(5 blocks)

File F
(6 blocks)

…

(File C) (File E)

(File B) 5 free
blocks

6 free
blocks

(File G)(File A)

(a)

(b)

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Contiguous Allocation Analysis

❖ Pros

▪ Quick and simple ☺

❖ Cons

▪ Issues with fragmentation when we delete files

▪ Can’t extend the size of files easily 

56

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Linked List Allocation

❖ Similar idea to the free-list idea we had for memory
allocation

❖ Each file in our file system has the block number of its first
block.

❖ Each physical block on disk contains a pointer to the next
block or NULL to mark this is the end of the file

57

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

❖ Storing a file as a linked list of disk blocks

Linked List Allocation

File
block

0

4

0

File
block

4

12

File
block

1

7

File
block

2

2

File
block

3

10

File
block

0

6

File
block

1

3

File
block

2

11

0

File
block

3

14

File A

File B

Physical
block

Physical
block

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

B0 B1 B2 B3 B4File

Disk B0 B2 B1 B4 B3

PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10

Linked List Allocation

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Linked List Allocation

❖ Consider:

▪ Space needed

▪ Fragmentation

▪ Time to scan the whole file

▪ Time to access the last block in the file

60

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Linked List Allocation Analysis

❖ Pros

▪ No External Fragmentation! As long as there is free space, we can
put a block there

❖ Cons

▪ Extra Space needed for the “next” pointers

▪ Sequential access can be rough

▪ Random access can be rough

61

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

File Allocation Table (FAT)

❖ Linked List: to access a block we need to traverse the
entire list. Each node in the list could require a new disk
seek operation, which takes a long time…

❖ Idea: store the pointers somewhere else so we don’t have
to traverse disk to find where the Nth block is.

▪ Store a table in memory so that it is quick to access.

62

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

B0 B1 B2 B3 B4File

Disk FAT B0 B2 B1 B4 B3

PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10

Addressable Space:
𝟒 𝑲𝑩 ∗ 𝟐𝟏𝟔

File Allocation Table (FAT)

Fat is stored near the
beginning of disk and
loaded into memory
when we boot it up

The translation (orange arrows) are done with the FAT table

The blue arrows are stored in the FAT table

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

FAT Table

0

1

2 10

3 11

4 7

5

6 3

7 2

8

9

10 12

11 14

12 -1

13

14 -1

15

Physical
Block

File A starts
here

File B starts
here

Unused block

❖ The FAT table consists of
an array.

▪ The index into the array is
the physical block number

▪ The value is the block number
of the next block in the file
or -1 to indicate end of file

❖ Array must have one entry
per physical block on the disk
even if some of the blocks are
unused.

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

FAT Table

0

1

2 10

3 11

4 7

5

6 3

7 2

8

9

10 12

11 14

12 -1

13

14 -1

15

Physical
Block

File A starts
here

File B starts
here

Unused block

❖ What are the blocks that
make up file A?

❖ What about file B?

pollev.com/tqm

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

FAT Allocation Analysis

❖ Pros

▪ No External Fragmentation! As long as there is free space, we can
put a block there

▪ Random access is a lot quicker!

❖ Cons

▪ Extra Space needed for the FAT table in both memory and disk

▪ As Disk spaces increases, the size of the FAT table increases.

▪ Sequential access can be rough still 

66

CIS 3800, Fall 2023L15: Scheduling & File System IntroUniversity of Pennsylvania

Defragmentation

❖ Accessing data as it would appear sequentially in a file can
still take some time

▪ if the blocks are not contiguous on disk, a seek must occur to
access the next block and that seek could be far away

❖ Even with FAT (and other allocation schemes), it is best to
keep data of the same file next to each other.

❖ Defragmentation or “De-fragging” a drive involves
rearranging blocks on hardware to be next to each other

▪ Can take a while to do, but can speed up disk usage.

67

	Default Section
	Slide 1: Scheduling & File System Intro Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Poll: how are you?
	Slide 6: Lecture Outline
	Slide 7: OS as the Scheduler
	Slide 8: Scheduler Terminology
	Slide 9: Goals
	Slide 10: Scheduling: Other Considerations
	Slide 11: Types of Scheduling Algorithms
	Slide 12: First Come First Serve (FCFS)
	Slide 13: Example of FCFS
	Slide 14
	Slide 15: FCFS Analysis
	Slide 16: Shortest Job First (SJF)
	Slide 17: Example of SJF
	Slide 18
	Slide 20: Types of Scheduling Algorithms
	Slide 21: Round Robin
	Slide 22: Example of Round Robin
	Slide 23
	Slide 24: Round Robin Analysis
	Slide 25: RR Variant: PennOS Scheduler
	Slide 26: RR Variant: Priority Round Robin
	Slide 27: RR Variant: Multi Level Feedback
	Slide 28: Multi Level Feedback Analysis
	Slide 29: Multi Level Feedback Variants: Priority
	Slide 30: Why did we talk about this?
	Slide 31: The Priority Inversion Problem
	Slide 32: More
	Slide 33: Lecture Outline
	Slide 34: File System: User Level STD API
	Slide 35: File System: User Level STD API again
	Slide 36: User Perspective: A stream of bytes
	Slide 37: User Perspective: A stream of bytes
	Slide 38: User Perspective: A stream of bytes
	Slide 39: User Perspective: A stream of bytes
	Slide 40: Operating System Perspective: Blocks
	Slide 41: Operating System Perspective: Blocks
	Slide 42: High Level: View
	Slide 43: High Level: View
	Slide 44: Operating System Perspective: Hardware
	Slide 45: Operating System Perspective: Hardware
	Slide 46: Operating System Perspective: Hardware
	Slide 47: Block Size
	Slide 48: Memory Hierarchy (again)
	Slide 49: Seek Time
	Slide 50: HDD vs SSD
	Slide 51: Lecture Outline
	Slide 52: Disk vs Memory Allocation
	Slide 53: Contiguous Allocation
	Slide 54: Contiguous Allocation
	Slide 55: Contiguous Allocation
	Slide 56: Contiguous Allocation Analysis
	Slide 57: Linked List Allocation
	Slide 58: Linked List Allocation
	Slide 59
	Slide 60
	Slide 61: Linked List Allocation Analysis
	Slide 62: File Allocation Table (FAT)
	Slide 63: File Allocation Table (FAT)
	Slide 64: FAT Table
	Slide 65: FAT Table
	Slide 66: FAT Allocation Analysis
	Slide 67: Defragmentation

