
CIS 3800
Penn-OS Lecture

Fall 2023

1

Milestone and Demo
Milestone 1: Due by Nov. 3rd (TA Meeting by 3rd)

Meeting with group and TA

General discussion regarding the design of your project

Pass/Fail grade

Milestone 2: Nov. 10th (TA Meeting 10th-14th)

Meeting with group and TA

"Significant Progress" expected (~60% complete)

Pass/Fail grade

Due: Submission Nov. 27th / Demos Latest Dec. 6th

Present your PennOS to TA

Demo plan to be released at a later date
2

Development Grading Breakdown

5% Documentation

45% Kernel/Scheduler

35% File System

15% Shell

3

Companion Document/README

Required to provide a Companion Document

Consider this like APUE or K-and-R

Describes how OS is built and how to use it

README

Describes implementation and design choices

4

Lecture Outline

• PennOS Overview

• PennFAT file system

• Scheduling & Process Life Cycle

• ucontext

• PennOS Shell

• Demo

5

PennOS Overview

6

Projects So Far

• Penn Shredder

○ Mini Shell with Signal Handling

• Penn Shell

○ Redirections and Pipelines

○ Process Groups and Terminal Control

○ Job Control

You will be implementing major user-level calls in Penn OS

7

PennOS

Kernel Shell

#> sleep 2

...
SchedulerI/OPennFat

8

PennOS as a GuestOS

PennFAT

Kernel Shell

#>

sleep

2

...

Sched

uler
I/O

PennOS

Host Operating System

LINUX Kernel

Scheduler

I/O

bash

X11

etc

Single Process

9

User Land Shell Interaction

Kernel Shell

#> sleep 2

...
SchedulerI/OPennFat

10

PennFAT File System

11

What is a File System?

• A File System is a collection of data structures and
methods an operating system uses to structure and
organize data and allow for consistent storage and
retrieval of information

• Basic unit: a file

• A file (a sequence of data) is stored in a file system as
a sequence of data-containing blocks

12

What is a FAT?

• FAT stands for file allocation table, which is an
architecture for organizing and referring to files and
blocks in a file system.

• There exist many methods for organizing file
systems; modern operating systems support only their
‘native’ file system, for example:

• FAT (DOS, Windows)

• Mac OS X

• ext{1,2,3,4} (Linux)

• NTFS (Windows)

13

FAT

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

How can we read file 11?

Find Block 11, 14, and 15?

Each value in the

FAT table refers to a

block number

14

File System Layout
Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

FAT (Before Blocks)

Block 1

Block 2

Block 3

Block 4

Block 5

{
Offset 0

mmap() to memory

15

File Alignment

Block 11 Block 14 Block 15

Files are distributed across blocks

f_lseek(n, F_SEEK_SET, 60)

f_lseek(n, F_SEEK_SET, block_size - 1)

f_lseek(n, F_SEEK_SET, block_size * 2 + 100)

16

Adjusting File Size

f_write(n, buffer, block_size)

Block 11

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

Block 14 Block 15 Block 22

...

14

13

-1

15

22

...

-1

…

17

...

11

12

13

14

15

...

22

…

PennFAT Specification

18

File System

• Array of unsigned, little endian, 16-bit entries

• mkfs NAME BLOCKS_IN_FAT BLOCK_SIZE

• FAT region and DATA region

Layout

Region Size Contents

FAT Region block size * number of blocks in FAT File Allocation Table

Data Region block size * (number of FAT entries – 1) directories and files

FAT DATA

PennFAT FileSystem

2 bytes

FAT Region

• FAT entry size: 2 bytes

• First entry – special entry for FAT and block sizes

- LSB: size of each block

- MSB: number of blocks in FAT

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096

FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in

FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128

0x0101 1 1 512 1 512 256

0x1003 16 3 2048 16 32768 16384

0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.

Why?

Other entries of FAT

fat[i] (i > 0) Data region block type

0 free block

0xFFFF last block of file

[2, number of FAT entries) next block of file

FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in

FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128

0x0101 1 1 512 1 512 256

0x1003 16 3 2048 16 32768 16384

0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.

Why?

- 0xFFFF is reserved for last block of file

Example FAT

Index Link Notes

0 0x2004 32 blocks, 4KB block size

1 0xFFFF Root directory

2 4 File A starts, links to block 4

3 7 File B starts, links to block 7

4 5 File A continues to block 5

5 0xFFFF Last block of file A

6 18 File C starts, links to block 18

7 17 File B continues to block 17

8 0x0000 Free block

Data Region

- Each FAT entry represents a file block in data region

- Data Region size = block size * (# of FAT entries - 1)

• b/c first FAT entry (fat[0]) is metadata

- block numbering begins at 1:

• block 1 – always the first block of the root directory

• other blocks – data for files, additional blocks of the root
directory, subdirectories (extra credit)

What is a directory?

• A directory is a file consisting of entries that describe
the files in the directory.

• Each entry includes the file name and other
information about the file.

• The root directory is the top-level directory.

27

Directory entry

Fixed size of 64 bytes each

• file name: 32 bytes (null terminated)

- legal characters: [A-Za-z0-9._-]

 (POSIX portable filename character set)

- first byte special values:
name[0] Description

0 end of directory

1 deleted entry; the file is also deleted

2 deleted entry; the file is still being used

Directory entry (cont.)

• file size: 4 bytes

• first block number: 2 bytes (unsigned)

• file type: 1 byte

Value File Type

0 unknown

1 regular file

2 directory

4 symbolic link (extra credit)

Directory entry (cont.)

• file permission: 1 byte

• timestamp: 8 bytes returned by time(2)

• remaining 16 bytes: reserved for E.C

Value Permission

0 none

2 write only

4 read only

5 read and executable

6 read and write

7 read, write, and executable

0x2002

0xFFFF

fat[0]

fat[1]
FAT

Region

:

:
:

Data

Region

32

blocks

1024

bytes

1024

bytes

1024

bytes

1024

bytes

Block 1

Block 2

first block of

root directory

2 bytes

2 bytes

0

:
:

16,383

blocks

PennFAT after
initial formatting0x0000

0x0000

fat[0] = 0x2002

- 32 blocks of 1024 bytes in FAT

First block of Data Region is first

block of root directory

Correspondingly, fat[1] refers to that

Block 1, which ends there. So it has

value of 0xFFFF

0x2002

0xFFFF

fat[0]

fat[1]
FAT

Region

:

:
:

Data

Region

32

blocks

1024

bytes

1024

bytes

1024

bytes

1024

bytes

Block 1

Block 2

first block of

root directory

2 bytes

2 bytes

:
:

16,383

blocks

PennFAT after
creating an
empty file

32 bytes

0x00000000 4 bytes

:
:

64

bytes

16

directory

entries

Block 1

64

bytes

0

:
:

8 bytes

b a r \0

0x0000

0x0000

0x2002

0xFFFF

fat[0]

fat[1]
FAT

Region

:

:
:

Data

Region

32

blocks

1024

bytes

1024

bytes

1024

bytes

1024

bytes

Block 1

Block 2

first block of

root directory

2 bytes

2 bytes

:
:

16,383

blocks

PennFAT after
writing to the file

32 bytes

0x00000006 4 bytes

64

bytes

16

directory

entries

Block 1

0xFFFF 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64

bytes

0

:
:

0x01 1 byte

0x06 1 byte

8 bytes

b a r \0

0x0000

0x2002

0xFFFF

fat[0]

fat[1]
FAT

Region

:

:
:

Data

Region

32

blocks

1024

bytes

1024

bytes

1024

bytes

1024

bytes

Block 1

Block 2

first block of

root directory

2 bytes

2 bytes

:
:

16,383

blocks

PennFAT after
removing the file

b a r \0 32 bytes

0x00000006 4 bytes

64

bytes

16

directory

entries

Block 1

0x0000 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64

bytes

0

:
:

0x01 1 byte

0x06 1 byte

8 bytes

1

0x0000

Scheduling & Process Life Cycle

35

Scheduling in PennOS

PennFAT

Kernel Shell

#>

sleep

2

...

Sched

uler
I/O

PennOS

shell sleep

busy

ps

Scheduler

Queue -1 Queue 0 Queue 1

Exponential Relationship

Queue -1 scheduled 1.5 times more

frequently than Queue 0

Queue 0 scheduled 1.5 times more

frequent than Queue 1

Round Robin within Queue

busy

sleep

user contexts

36

Process Statuses

Running

Blocked

Stopped

Zombied

Orphaned

37

Process Life Cycle

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

Running

Blocked

Stopped

Running

Stopped

Running

38

PennOS Kernel Functions

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

Running

Blocked

Stopped

Running

Stopped

Running

k_process_create()

k_process_kill()

Zombie Queue

39

Process Control Block (PCB)

typedef struct pcb {

} pcb_t

40

PennOS State Change Functions

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

p_kill(pid,S_SIGSTOP) p_kill(pid,S_SIGCONT)

p_kill(pid,S_SIGRTERM) p_exit()

p_waitpid(…)

return

41

Programming with User Contexts

42

What are User Contexts?

Basic thread-like library

(at the core of pthread implementation)

Isolate code execution within a context

Resource sharing

One process can switch between different executions

43

“Hello Contexts”: a brief tour
void f(){

 printf("Hello World\n");

}

int main(int argc, char * argv[]){

 ucontext_t uc;

 void * stack;

 getcontext(&uc);

 stack = malloc(STACKSIZE);

 uc.uc_stack.ss_sp = stack;

 uc.uc_stack.ss_size = STACKSIZE;

 uc.uc_stack.ss_flags = 0;

 sigemptyset(&(uc.uc_sigmask));

 uc.uc_link = NULL;

 makecontext(&uc, f, 0);

 setcontext(&uc);

 perror("setcontext");

 return 0;

}
44

ucontext

 typedef struct ucontext {

 struct ucontext *uc_link;

 sigset_t uc_sigmask;

 stack_t uc_stack;

 ...

 } ucontext_t;

Context run when

this one completes

Set of blocked

signals for this

context

Execution stack for

this context

45

int getcontext(ucontext_t *ucp)

Initializes a ucontext_t

Does not initialize uc_link, uc_sigmask, or

uc_stack

getcontext(&uc);

 stack = malloc(STACKSIZE);

 uc.uc_stack.ss_sp = stack;

 uc.uc_stack.ss_size = STACKSIZE;

 uc.uc_stack.ss_flags = 0;

 sigemptyset(&(uc.uc_sigmask));

 uc.uc_link = NULL;

46

void makecontext(ucontext_t *ucp,

void (*func)(),

int argc,...)

Specify the function to run when context is

activated

func : function to run

argc : number of integer arguments

... : the integer arguments

void f(){

 printf("Hello World\n");

}

// ...

makecontext(&uc, f, 0);

47

setcontext(const ucontext_t *ucp)

 swapcontext(ucontext_t *oucp,

 const ucontext_t *ucp)

Activates a context

setcontext : sets the context to ucp

swapcontext : sets context to ucp,

 saves current context in oucp

 setcontext(&uc);

 perror("setcontext");

48

“Hello Contexts”
void f(){

 printf("Hello World\n");

}

int main(int argc, char * argv[]){

 ucontext_t uc;

 void * stack;

 getcontext(&uc);

 stack = malloc(STACKSIZE);

 uc.uc_stack.ss_sp = stack;

 uc.uc_stack.ss_size = STACKSIZE;

 uc.uc_stack.ss_flags = 0;

 sigemptyset(&(uc.uc_sigmask));

 uc.uc_link = NULL;

 makecontext(&uc, f, 0);

 setcontext(&uc);

 perror("setcontext");

 return 0;

}
49

50

Ucontext Demo

Many ways to segfault

• Forgetting makecontext

• Making the stack too small

• Not initializing uc_link

• Not initializing the context properly with

getcontext

• Re-executing a terminated context

51

PennOS Shell

52

Shell Requirements

Synchronous Child Waiting

Redirection (no pipelines)

Parsing

Terminal Signaling

Terminal Control

53

Shell Functions

Basic interaction with PennOS

Two types:

Functions that run as separate process

Functions that run as shell sub-routines

54

Examples of Built-ins That Run as a
Process

cat

sleep

busy

ls

touch

mv

cp

rm

ps
55

Examples of Built-ins That Run as a
Subroutine

nice

nice_pid

man

bg

fg

jobs

logout

56

Demo

57

Questions?

58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: File System
	Slide 20: Layout
	Slide 21: FAT Region
	Slide 22: FAT first-entry examples
	Slide 23: Other entries of FAT
	Slide 24: FAT first-entry examples
	Slide 25: Example FAT
	Slide 26: Data Region
	Slide 27
	Slide 28: Directory entry
	Slide 29: Directory entry (cont.)
	Slide 30: Directory entry (cont.)
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

