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Milestone and Demo
Milestone 1: Due by Nov. 3rd (TA Meeting by 3rd)

Meeting with group and TA

General discussion regarding the design of your project

Pass/Fail grade

Milestone 2: Nov. 10th (TA Meeting 10th-14th)

Meeting with group and TA

"Significant Progress" expected (~60% complete)

Pass/Fail grade

Due: Submission Nov. 27th / Demos Latest Dec. 6th

Present your PennOS to TA

Demo plan to be released at a later date
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Development Grading Breakdown

5% Documentation

45% Kernel/Scheduler

35% File System

15% Shell
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Companion Document/README

Required to provide a Companion Document

Consider this like APUE or K-and-R

Describes how OS is built and how to use it

README

Describes implementation and design choices
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Lecture Outline

• PennOS Overview

• PennFAT file system 

• Scheduling & Process Life Cycle

• ucontext

• PennOS Shell

• Demo
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PennOS Overview
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Projects So Far

• Penn Shredder

○ Mini Shell with Signal Handling

• Penn Shell

○ Redirections and Pipelines

○ Process Groups and Terminal Control

○ Job Control

You will be implementing major user-level calls in Penn OS
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PennOS

Kernel Shell

#> sleep 2

...
SchedulerI/OPennFat
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PennOS as a GuestOS

PennFAT

Kernel Shell

#> 

sleep 

2

...

Sched

uler
I/O

PennOS

Host Operating System

LINUX Kernel

Scheduler

I/O

bash

X11

etc

Single Process
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User Land Shell Interaction

Kernel Shell

#> sleep 2

...
SchedulerI/OPennFat
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PennFAT File System
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What is a File System?

• A File System is a collection of data structures and 
methods an operating system uses to structure and 
organize data and allow for consistent storage and 
retrieval of information

• Basic unit: a file

• A file (a sequence of data) is stored in a file system as 
a sequence of data-containing blocks
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What is a FAT?

• FAT stands for file allocation table, which is an 
architecture for organizing and referring to files and 
blocks in a file system.

• There exist many methods for organizing file 
systems; modern operating systems support only their 
‘native’ file system, for example:

• FAT (DOS, Windows)

• Mac OS X

• ext{1,2,3,4} (Linux)

• NTFS (Windows)
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FAT

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

How can we read file 11?

Find Block 11, 14, and 15?

Each value in the 

FAT table refers to a 

block number

14



File System Layout
Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

FAT (Before Blocks)

Block 1

Block 2

Block 3

Block 4

Block 5

{
Offset 0

mmap() to memory
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File Alignment

Block 11 Block 14 Block 15

Files are distributed across blocks

f_lseek(n, F_SEEK_SET, 60)

f_lseek(n, F_SEEK_SET, block_size - 1)

f_lseek(n, F_SEEK_SET, block_size * 2 + 100)

16



Adjusting File Size

f_write(n, buffer, block_size)

Block 11

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

Block 14 Block 15 Block 22

...

14

13

-1

15

22

...

-1

…

17

...

11

12

13

14

15

...
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PennFAT Specification
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File System

• Array of unsigned, little endian, 16-bit entries

• mkfs NAME BLOCKS_IN_FAT BLOCK_SIZE

• FAT region and DATA region



Layout

Region Size Contents

FAT Region block size * number of blocks in FAT File Allocation Table

Data Region block size * (number of FAT entries – 1) directories and files

FAT DATA

PennFAT FileSystem

2 bytes



FAT Region

• FAT entry size: 2 bytes

• First entry – special entry for FAT and block sizes

- LSB: size of each block

- MSB: number of blocks in FAT

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096



FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in 

FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128

0x0101 1 1 512 1 512 256

0x1003 16 3 2048 16 32768 16384

0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.

Why?



Other entries of FAT

fat[i] (i > 0) Data region block type

0 free block

0xFFFF last block of file

[2, number of FAT entries) next block of file



FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in 

FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128

0x0101 1 1 512 1 512 256

0x1003 16 3 2048 16 32768 16384

0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.

Why?

- 0xFFFF is reserved for last block of file



Example FAT

Index Link Notes

0 0x2004 32 blocks, 4KB block size

1 0xFFFF Root directory

2 4 File A starts, links to block 4

3 7 File B starts, links to block 7

4 5 File A continues to block 5

5 0xFFFF Last block of file A

6 18 File C starts, links to block 18

7 17 File B continues to block 17

8 0x0000 Free block



Data Region

- Each FAT entry represents a file block in data region 

- Data Region size = block size * (# of FAT entries - 1)

• b/c first FAT entry (fat[0]) is metadata

- block numbering begins at 1:

• block 1 – always the first block of the root directory

• other blocks – data for files, additional blocks of the root 
directory, subdirectories (extra credit)



What is a directory?

• A directory is a file consisting of entries that describe 
the files in the directory.

• Each entry includes the file name and other 
information about the file.

• The root directory is the top-level directory.
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Directory entry

Fixed size of 64 bytes each

• file name: 32 bytes (null terminated)

- legal characters: [A-Za-z0-9._-]

 (POSIX portable filename character set)

- first byte special values:
name[0] Description

0 end of directory

1 deleted entry; the file is also deleted 

2 deleted entry; the file is still being used



Directory entry (cont.)

• file size: 4 bytes

• first block number: 2 bytes (unsigned)

• file type: 1 byte

Value File Type

0 unknown

1 regular file

2 directory

4 symbolic link (extra credit)



Directory entry (cont.)

• file permission: 1 byte

• timestamp: 8 bytes returned by time(2)

• remaining 16 bytes: reserved for E.C

Value Permission

0 none

2 write only

4 read only

5 read and executable

6 read and write

7 read, write, and executable



0x2002

0xFFFF

fat[0]

fat[1]
FAT 

Region

:

:
:

Data 

Region

32 

blocks

1024 

bytes

1024 

bytes

1024 

bytes

1024 

bytes

Block 1

Block 2

first block of 

root directory

2 bytes

2 bytes

0

:
:

16,383 

blocks

PennFAT after 
initial formatting0x0000

0x0000

fat[0] = 0x2002

- 32 blocks of 1024 bytes in FAT

First block of Data Region is first 

block of root directory

Correspondingly, fat[1] refers to that 

Block 1, which ends there. So it has 

value of 0xFFFF



0x2002

0xFFFF

fat[0]

fat[1]
FAT 

Region

:

:
:

Data 

Region

32 

blocks

1024 

bytes

1024 

bytes

1024 

bytes

1024 

bytes

Block 1

Block 2

first block of 

root directory

2 bytes

2 bytes

:
:

16,383 

blocks

PennFAT after 
creating an 
empty file

32 bytes

0x00000000 4 bytes

:
:

64 

bytes

16 

directory 

entries

Block 1

64 

bytes

0

:
:

8 bytes

b a r \0

0x0000

0x0000



0x2002

0xFFFF

fat[0]

fat[1]
FAT 

Region

:

:
:

Data 

Region

32 

blocks

1024 

bytes

1024 

bytes

1024 

bytes

1024 

bytes

Block 1

Block 2

first block of 

root directory

2 bytes

2 bytes

:
:

16,383 

blocks

PennFAT after 
writing to the file

32 bytes

0x00000006 4 bytes

64 

bytes

16 

directory 

entries

Block 1

0xFFFF 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64 

bytes

0

:
:

0x01 1 byte

0x06 1 byte

8 bytes

b a r \0

0x0000



0x2002

0xFFFF

fat[0]

fat[1]
FAT 

Region

:

:
:

Data 

Region

32 

blocks

1024 

bytes

1024 

bytes

1024 

bytes

1024 

bytes

Block 1

Block 2

first block of 

root directory

2 bytes

2 bytes

:
:

16,383 

blocks

PennFAT after 
removing the file

b a r \0 32 bytes

0x00000006 4 bytes

64 

bytes

16 

directory 

entries

Block 1

0x0000 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64 

bytes

0

:
:

0x01 1 byte

0x06 1 byte

8 bytes

1

0x0000



Scheduling & Process Life Cycle
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Scheduling in PennOS

PennFAT

Kernel Shell

#> 

sleep 

2

...

Sched

uler
I/O

PennOS

shell sleep

busy

ps

Scheduler

Queue -1 Queue 0 Queue 1

Exponential Relationship

Queue -1 scheduled 1.5 times more 

frequently than Queue 0

Queue 0 scheduled 1.5 times more 

frequent than Queue 1

Round Robin within Queue

busy

sleep

user contexts
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Process Statuses

Running

Blocked

Stopped

Zombied

Orphaned
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Process Life Cycle

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

Running

Blocked

Stopped

Running

Stopped

Running
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PennOS Kernel Functions

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

Running

Blocked

Stopped

Running

Stopped

Running

k_process_create()

k_process_kill()

Zombie Queue
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Process Control Block (PCB)

typedef struct pcb {

} pcb_t
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PennOS State Change Functions

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

p_kill(pid,S_SIGSTOP) p_kill(pid,S_SIGCONT)

p_kill(pid,S_SIGRTERM) p_exit()

p_waitpid(…)

return

41



Programming with User Contexts
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What are User Contexts?

Basic thread-like library

(at the core of pthread implementation)

Isolate code execution within a context

Resource sharing

One process can switch between different executions
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“Hello Contexts”: a brief tour 
void f(){

  printf("Hello World\n");

}

int main(int argc, char * argv[]){

  ucontext_t uc;

  void * stack;

  getcontext(&uc);

  stack = malloc(STACKSIZE);

  uc.uc_stack.ss_sp = stack;

  uc.uc_stack.ss_size = STACKSIZE;

  uc.uc_stack.ss_flags = 0;

  sigemptyset(&(uc.uc_sigmask));

  uc.uc_link = NULL;

  makecontext(&uc, f, 0);

  setcontext(&uc);

  perror("setcontext");

  return 0;

}
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ucontext

  typedef struct ucontext {

    struct ucontext *uc_link;

    sigset_t         uc_sigmask;

    stack_t          uc_stack;

       ...

  } ucontext_t;

Context run when 

this one completes

Set of blocked 

signals for this 

context

Execution stack for 

this context
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int getcontext(ucontext_t *ucp)

Initializes a ucontext_t

Does not initialize uc_link, uc_sigmask, or 

uc_stack

getcontext(&uc);

  stack = malloc(STACKSIZE);

  uc.uc_stack.ss_sp = stack;

  uc.uc_stack.ss_size = STACKSIZE;

  uc.uc_stack.ss_flags = 0;

  sigemptyset(&(uc.uc_sigmask));

  uc.uc_link = NULL;
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void makecontext(ucontext_t *ucp,                                

void (*func)(),                                

int argc,...)

Specify the function to run when context is 

activated

func : function to run

argc : number of integer arguments

... : the integer arguments

void f(){

  printf("Hello World\n");

}

// ...

makecontext(&uc, f, 0);
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setcontext(const ucontext_t *ucp)

 swapcontext(ucontext_t *oucp, 

          const ucontext_t *ucp)

Activates a context

setcontext     : sets the context to ucp

swapcontext   : sets context to ucp, 

                                saves current context in oucp

  setcontext(&uc);

  perror("setcontext");
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“Hello Contexts”
void f(){

  printf("Hello World\n");

}

int main(int argc, char * argv[]){

  ucontext_t uc;

  void * stack;

  getcontext(&uc);

  stack = malloc(STACKSIZE);

  uc.uc_stack.ss_sp = stack;

  uc.uc_stack.ss_size = STACKSIZE;

  uc.uc_stack.ss_flags = 0;

  sigemptyset(&(uc.uc_sigmask));

  uc.uc_link = NULL;

  makecontext(&uc, f, 0);

  setcontext(&uc);

  perror("setcontext");

  return 0;

}
49
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Ucontext Demo



Many ways to segfault

• Forgetting makecontext

• Making the stack too small

• Not initializing uc_link

• Not initializing the context properly with 

getcontext

• Re-executing a terminated context
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PennOS Shell
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Shell Requirements

Synchronous Child Waiting

Redirection (no pipelines)

Parsing

Terminal Signaling

Terminal Control
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Shell Functions

Basic interaction with PennOS

Two types:

Functions that run as separate process

Functions that run as shell sub-routines
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Examples of Built-ins That Run as a 
Process

cat

sleep

busy

ls

touch

mv

cp

rm

ps
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Examples of Built-ins That Run as a 
Subroutine

nice

nice_pid

man

bg

fg

jobs

logout
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Demo
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Questions?
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