
CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Devices, Drivers, DMA, Buffering
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund      &     Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Administrivia

❖MILESTONE 1 IS DUE between 
Friday 11/10 – Tuesday 11/14
▪ Expecting around 60% progress on this

▪ Should have stand-alone PennFAT

▪ Must meet with your TA in the specified window to demonstrate 
what you have implemented

❖ Recitation after lecture today will be about PennFAT

2



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Administrivia

❖ I synched a bunch of grades to canvas. PLEASE CHECK 
THAT THEY ARE ACCURATE

▪ All check-ins

▪ Project 0 & peer-eval

❖ Midterm Grades Posted

▪ Regrade requests open, due Saturday night @ midnight

3



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Lecture Outline

❖ Device Drivers

▪ LC4_GETC

❖ Stdio Buffering

▪ fflush()

▪ fsync()

5



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

I/O

❖ Reading/writing anything “beyond” memory is called I/O

▪ We call the locations we read/write to I/O devices

❖ I/O devices include:

▪ Keyboard 

▪ Mouse

▪ Files

▪ Graphics Displays

▪ Networks

▪ Etc.

6



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Devices

❖ There are other “devices” than just the file storage

▪ Auxiliary hardware that extends the functionality of the 
computer. The computer sends and/or receives data to 
communicate with the device 

▪ Sometimes called “Peripheral Devices”

❖ Examples:

▪ Mouse

▪ Keyboard

▪ Game Controller

▪ Printer

▪ Network adapter

▪ Projector

▪ etc
7



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Kinds of Devices

❖ These devices have many different functionalities and 
characteristics

❖ Block based vs character based

▪ File system is block based

▪ Keyboards are character based

❖ Shared by many processes

▪ Network card, disk

❖ User related vs OS related

▪ Keyboard vs system clock
8



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Device Drivers

❖ How does a computer support these various device types?

❖ Each device has a driver: a piece of software that acts as 
the interface to the device. Abstracts away some of the 
hardware details of the device

▪ Contains device specific routines for communicating with the 
computer and routines for controlling/configuring the device

❖ Your computer comes with some device drivers installed

❖ When you plug in a new device, your computer will start 
installing device drivers for that device.

9



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

IOCTL

❖ Input/Output Control

❖ The provided Linux system calls (e.g. read, write) are not 
enough to express the different functions a device may 
have. 

❖ Ioctl

▪ Specify the file descriptor of the device you want to interact with

▪ Request contains information on what you would like to do (and 
some other information)

▪ Variadic arguments (usually a char* or void*)

10

int ioctl(int fd, int request, ...)



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Device Naming & Separation

❖ It can be difficult to keep track of which device is using 
what resources. If we use memory mapped I/O, what 
addresses belong to which files?

❖ If we have everything resident in OS memory, then it 
could also be difficult to manage concurrent processes 
accessing the same device

11



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Everything is File

❖ Idea: Give each device a named file and have most 
requests go through the filesystem.

❖ The filesystem allows us to name our devices.

▪ /dev/ directory contains various devices as “files”

▪ For example, /dev/printer1 

❖ I/O requests through the file system are already 
scheduled, have an order enforced, and are checked to be 
concurrent safe*

▪ (from the filesystem level, user can still mess it up)

12



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Everything is File

❖ Note: these devices are not 
like normal “files” as 
discussed previously

❖ These things just appear as 
files and can be 
read/written to perform 
some functionality.

❖ Many things are files in 
linux, it provides a nice 
consistent interface to 
interact with devices. 13



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Special Devices

❖ Some special devices that exist in /dev/

❖ /dev/urandom and /dev/random

▪ Provides bytes by the computers cryptographically secure 
pseudorandom number generator

❖ /dev/null

▪ Discards anything that is written to it and reports the write as a 
success.

❖ /dev/fd/

▪ Directory containing the open file descriptors for the running 
process

❖ /dev/stdin, /dev/stdout, /dev/stderr

▪ Access to the process’ standard streams 14



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

I/O Architecture

App

File System API

External 
Device

Device
Controller

Device 
Driver

User 
Space

Kerne
l 

Space



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

I/O Devices & Controllers

❖ Most I/O devices are not purely digital, they have their 
own hardware

▪ Electro-mechanical: e.g. keyboard, mouse, disk, motor

▪ Analog/digital: e.g. touchscreen, network interface, monitor, 
speaker, mic 

❖ … all have digital interfaces presented by an I/O Controller

▪ I/O Device (analog/digital mix) talks to controller

▪ CPU (digital) talks to controller (typically through a device driver)

▪ Controller acts as a translator: digital (CPU) <-> analog (device)

16

I/O Controller I/O device

C
P

U



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

I/O Controller to CPU Interface

❖ I/O controller interface abstracts I/O device as “device 
registers”

▪ Control/Status: may be one register or two

• Control: lets us toggle options on the device (we won’t focus on this)

• Status: lets us know if we are data is ready to be read/written

▪ Data: may be more than one register

• The data we are reading/writing

❖ Example: CPU reading data from input device

▪ CPU checks status register if input is available

▪ Reads input the data register

17

Control/Status

Data

Electronics I/O device

Similar steps for writing.
More details later!



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

How can we handle I/O with code/asm?

❖ Two common options

❖ We could create new “I/O instructions” for the ISA

▪ Designate opcode(s) for I/O

▪ Register and operation encoded in instruction

❖ Memory-mapped I/O (Using LDR/STR for LC4)

▪ Assign a memory address to each device register

▪ Use conventional loads and stores

▪ Hardware intercepts loads/stores to these address

▪ No actual memory access performed
(MMU and caches get more complicated as a result)

▪ LC4 (and most other platforms) do this

▪ This allows for the I/O code to be written in C and is more 
portable to other systems.

18



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is what we did in LC4

19

pollev.com/tqm

char getc() {

  while(*device_status == NOT_READY) {

    // do nothing

  }

  char user_input = *device_data;

  return user_input;

}



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is what we did in LC4

20

pollev.com/tqm

char getc() {

  while(*device_status == NOT_READY) {

    // do nothing

  }

  char user_input = *device_data;

  return user_input;

}

Busy waiting 



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is trying to make this “No hang”, do not block if character is 
not available

21

pollev.com/tqm

char getc() {

  if (*device_status == NOT_READY) {

    return NOT_READY;

  }

  char user_input = *device_data;

  return user_input;

}



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is trying to make this “No hang”, do not block if character is 
not available

22

pollev.com/tqm

char getc() {

  if (*device_status == NOT_READY) {

    return NOT_READY;

  }

  char user_input = *device_data;

  return user_input;

}

Busy waiting still possible… What happens if 
the process is blocked on waiting for input?



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Interrupts

❖ Can instead have the
hardware device interrupt
the CPU to let the OS
know that some I/O
request is done

❖ Allows OS to not run
blocked processes, 
and scheduler other
processes that will
utilize the CPU

23



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Question: what?

❖ How do interrupts work to solve the problem we just 
discussed?

❖ If the CPU is not doing the work, then what is?

24



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

CPU vs Co-processors

❖ The CPU is the Central Processing Unit

▪ The set of instructions that are possible is fixed, but the exact 
instructions & program changes.

▪ This allows the CPU to be more “general purpose”

❖ Our computer also has Coprocessors

▪ These are hardware devices that also perform some computation 
to supplement the CPU.

▪ Usually more specialized

▪ Examples: Graphics Processing Unit (GPU), Floating Point Unit 
(FPU), I/O processors, network cards, sound cards, etc. 

▪ What these do and how they are controlled can vary a lot.

25



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

DMA

❖ To support co-processors, they are usually Direct Memory 
Access (DMA)

▪ If DMA is supported, then allowed coprocessors can directly 
access memory independently of CPU

❖ In our I/O example, this means that an I/O request looks 
something like:

▪ First the CPU sends a request to the I/O coprocessor for a storage 
medium to perform some read/write.

▪ The coprocessor can fulfill this request and access memory 
directly to store what is read or get what needs to be written

▪ The CPU does other things while the I/O request is running and 
eventually is interrupted by the coprocessor when the request is 
done. 26



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

27

C
P
U
 
1
.
a

I
/
O
 
1
.
b

C
P
U
 
1
.
c

I
/
O
 
1
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
a

I
/
O
 
2
.
b

C
P
U
 
3
.
a

I
/
O
 
3
.
b

C
P
U
 
3
.
c

I
/
O
 
3
.
d

C
P
U
 
3
.
e

time

query 2

query 3

query 1

C
P
U
 
2
.
c

I
/
O
 
2
.
d

C
P
U
 
2
.
e

*Running with 1 CPU

Note how only one thread 

uses any specific resource 

at a time

The OS schedules all of 

this for us ☺

Remember this?
Coprocessors are the reason
why this works.

While one coprocessor is doing
some I/O, the CPU can
run some other query



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Lecture Outline

❖ d

28



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello 
printed?

29

int main() {

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  return EXIT_SUCCESS;

}

pollev.com/tqm



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello 
printed?

30

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello 
printed?

31

int main() {

  if (fork() == 0) {

    printf("hello\n");

  }

  if (fork() == 0) {

    printf("hello\n");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

C stdio vs POSIX

❖ Why are we getting these different outputs?

❖ Let’s start with the first two. Both use different ways of 
writing to standard out.

▪ C stdio : user level portable library for standard input/output. 
Should work on any environment that has the C standard library

• E.g. printf, fprintf, fputs, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that 
are supported by many operating systems to support many OS-
level concepts (Input/Output, networking, processes, threads…)

32



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered writing

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one writes with fwrite(),  the data being written is 
copied into a buffer allocated by stdio inside your process’ 
address space

▪ As some point, once enough data has been written, the buffer will 
be “flushed” to the operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the 
filesystem too often

33



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

34

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

35

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

Store ‘h’ into 

buffer, so that 

we do not go to 

filesystem yet



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

36

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h

Store ‘i’ into 

buffer, so that 

we do not go to 

filesystem yet



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

37

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h i

When we call fclose, we 

deallocate and flush 

the buffer to disk



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

38

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Unbuffered Writing Example

39

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Unbuffered Writing Example

40

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Unbuffered Writing Example

41

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Unbuffered Writing Example

42

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Unbuffered Writing Example

43

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next

Two OS/File system 

accesses instead of one 



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a 
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

44



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading Example

45

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading Example

46

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

Arrow signifies what 
will be executed next

h i

Read as much as 

you can from the 

file

Copy out what 

was requested



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading Example

47

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

Arrow signifies what 
will be executed next

Get next char

from buffer

No need to go to file!



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading Example

48

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Reading Example

49

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not 
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and 

memory bandwidth

▪ Can potentially slow down high-performance applications, like a 
web server or database (“zero-copy”)

❖ When is buffering faster?  Slower?

50

Many small writes

Or only writing a little

Large writes



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

51

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

52

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 1

stdio buf

hello



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

53

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

54

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello

hello

hello

Hello is printed 4 times!



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Fork Problem Explained (pt.2)

❖ Why did we get different outputs when printf printed a 
newline character after hello? 

▪ Only difference was: 
                                                     vs

❖ All we needed to do to get the expected output was add a 
\n. why?

❖ printf prints to stdout and by default stdout is line 
buffered. Meaning it flushes the buffer on a newline 
character

▪ If we ran ./prog > out.txt (redirect the output), we would get 
different output since buffering policy changes. 

55

printf("hello"); printf("hello\n");



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

How to flush/modify the cstdio buffer

❖ For C stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ setvbuf

▪ Has a family of related functions like setbuf(), setbuffer(), 
setlinebuf();

▪ Can set the stream to be unbuffered or a specified buffer 

56

int fflush(FILE* stream);

int setvbuf(FILE* stream, char* buf,

            int mode, size_t size);



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

How to flush POSIX?

❖ When we write to a file with POSIX it is sent to the 
filesystem, is it immediately sent to disc? No

▪ Well, we do have the block cache… so it may not be written to 
disc

▪ Since all File I/O requests go to the file system, if another process 
accesses the same file, then it should see the data even if it is the 
block cache and not in disc.

▪ If we lose power though…

57



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

How to flush POSIX to disk 

❖ Two functions

▪ Fsync

▪ Flushes all in-core data and metadata to the storage medium

▪ fdatasync

▪ Sends the file data to disk

▪ Does not flush modified metadata unless necessary for data.

❖ C stdio is usually implemented using POSIX
on posix compliant systems
▪ fflush may not necessarily call fsync

58

int fsync(int fd);

int fdatasync(int fd);


	Default Section
	Slide 1: Devices, Drivers, DMA, Buffering Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: I/O
	Slide 7: Devices
	Slide 8: Kinds of Devices
	Slide 9: Device Drivers
	Slide 10: IOCTL
	Slide 11: Device Naming & Separation
	Slide 12: Everything is File
	Slide 13: Everything is File
	Slide 14: Special Devices
	Slide 15: I/O Architecture
	Slide 16: I/O Devices & Controllers
	Slide 17: I/O Controller to CPU Interface
	Slide 18: How can we handle I/O with code/asm?
	Slide 19: Poll: how are you?
	Slide 20: Poll: how are you?
	Slide 21: Poll: how are you?
	Slide 22: Poll: how are you?
	Slide 23: Interrupts
	Slide 24: Question: what?
	Slide 25: CPU vs Co-processors
	Slide 26: DMA
	Slide 27: Multi-threaded Search Engine (Execution)
	Slide 28: Lecture Outline
	Slide 29
	Slide 30
	Slide 31
	Slide 32: C stdio vs POSIX
	Slide 33: Buffered writing
	Slide 34: Buffered Writing Example
	Slide 35: Buffered Writing Example
	Slide 36: Buffered Writing Example
	Slide 37: Buffered Writing Example
	Slide 38: Buffered Writing Example
	Slide 39: Unbuffered Writing Example
	Slide 40: Unbuffered Writing Example
	Slide 41: Unbuffered Writing Example
	Slide 42: Unbuffered Writing Example
	Slide 43: Unbuffered Writing Example
	Slide 44: Buffered Reading
	Slide 45: Buffered Reading Example
	Slide 46: Buffered Reading Example
	Slide 47: Buffered Reading Example
	Slide 48: Buffered Reading Example
	Slide 49: Buffered Reading Example
	Slide 50: Why NOT Buffer?
	Slide 51: Fork Problem Explained
	Slide 52: Fork Problem Explained
	Slide 53: Fork Problem Explained
	Slide 54: Fork Problem Explained
	Slide 55: Fork Problem Explained (pt.2)
	Slide 56: How to flush/modify the cstdio buffer
	Slide 57: How to flush POSIX?
	Slide 58: How to flush POSIX to disk 


