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Administrivia

❖MILESTONE 1 IS DUE between 
Friday 11/10 – Tuesday 11/14
▪ Expecting around 60% progress on this

▪ Should have stand-alone PennFAT

▪ Must meet with your TA in the specified window to demonstrate 
what you have implemented

❖ Recitation after lecture today will be about PennFAT
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Administrivia

❖ I synched a bunch of grades to canvas. PLEASE CHECK 
THAT THEY ARE ACCURATE

▪ All check-ins

▪ Project 0 & peer-eval

❖ Midterm Grades Posted

▪ Regrade requests open, due Saturday night @ midnight

3
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

4

pollev.com/tqm
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Lecture Outline

❖ Device Drivers

▪ LC4_GETC

❖ Stdio Buffering

▪ fflush()

▪ fsync()

5
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I/O

❖ Reading/writing anything “beyond” memory is called I/O

▪ We call the locations we read/write to I/O devices

❖ I/O devices include:

▪ Keyboard 

▪ Mouse

▪ Files

▪ Graphics Displays

▪ Networks

▪ Etc.

6
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Devices

❖ There are other “devices” than just the file storage

▪ Auxiliary hardware that extends the functionality of the 
computer. The computer sends and/or receives data to 
communicate with the device 

▪ Sometimes called “Peripheral Devices”

❖ Examples:

▪ Mouse

▪ Keyboard

▪ Game Controller

▪ Printer

▪ Network adapter

▪ Projector

▪ etc
7
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Kinds of Devices

❖ These devices have many different functionalities and 
characteristics

❖ Block based vs character based

▪ File system is block based

▪ Keyboards are character based

❖ Shared by many processes

▪ Network card, disk

❖ User related vs OS related

▪ Keyboard vs system clock
8



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Device Drivers

❖ How does a computer support these various device types?

❖ Each device has a driver: a piece of software that acts as 
the interface to the device. Abstracts away some of the 
hardware details of the device

▪ Contains device specific routines for communicating with the 
computer and routines for controlling/configuring the device

❖ Your computer comes with some device drivers installed

❖ When you plug in a new device, your computer will start 
installing device drivers for that device.

9
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IOCTL

❖ Input/Output Control

❖ The provided Linux system calls (e.g. read, write) are not 
enough to express the different functions a device may 
have. 

❖ Ioctl

▪ Specify the file descriptor of the device you want to interact with

▪ Request contains information on what you would like to do (and 
some other information)

▪ Variadic arguments (usually a char* or void*)

10

int ioctl(int fd, int request, ...)
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Device Naming & Separation

❖ It can be difficult to keep track of which device is using 
what resources. If we use memory mapped I/O, what 
addresses belong to which files?

❖ If we have everything resident in OS memory, then it 
could also be difficult to manage concurrent processes 
accessing the same device

11
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Everything is File

❖ Idea: Give each device a named file and have most 
requests go through the filesystem.

❖ The filesystem allows us to name our devices.

▪ /dev/ directory contains various devices as “files”

▪ For example, /dev/printer1 

❖ I/O requests through the file system are already 
scheduled, have an order enforced, and are checked to be 
concurrent safe*

▪ (from the filesystem level, user can still mess it up)

12
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Everything is File

❖ Note: these devices are not 
like normal “files” as 
discussed previously

❖ These things just appear as 
files and can be 
read/written to perform 
some functionality.

❖ Many things are files in 
linux, it provides a nice 
consistent interface to 
interact with devices. 13



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Special Devices

❖ Some special devices that exist in /dev/

❖ /dev/urandom and /dev/random

▪ Provides bytes by the computers cryptographically secure 
pseudorandom number generator

❖ /dev/null

▪ Discards anything that is written to it and reports the write as a 
success.

❖ /dev/fd/

▪ Directory containing the open file descriptors for the running 
process

❖ /dev/stdin, /dev/stdout, /dev/stderr

▪ Access to the process’ standard streams 14
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I/O Architecture

App

File System API

External 
Device

Device
Controller

Device 
Driver

User 
Space

Kerne
l 

Space



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

I/O Devices & Controllers

❖ Most I/O devices are not purely digital, they have their 
own hardware

▪ Electro-mechanical: e.g. keyboard, mouse, disk, motor

▪ Analog/digital: e.g. touchscreen, network interface, monitor, 
speaker, mic 

❖ … all have digital interfaces presented by an I/O Controller

▪ I/O Device (analog/digital mix) talks to controller

▪ CPU (digital) talks to controller (typically through a device driver)

▪ Controller acts as a translator: digital (CPU) <-> analog (device)

16

I/O Controller I/O device
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I/O Controller to CPU Interface

❖ I/O controller interface abstracts I/O device as “device 
registers”

▪ Control/Status: may be one register or two

• Control: lets us toggle options on the device (we won’t focus on this)

• Status: lets us know if we are data is ready to be read/written

▪ Data: may be more than one register

• The data we are reading/writing

❖ Example: CPU reading data from input device

▪ CPU checks status register if input is available

▪ Reads input the data register

17

Control/Status

Data

Electronics I/O device

Similar steps for writing.
More details later!
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How can we handle I/O with code/asm?

❖ Two common options

❖ We could create new “I/O instructions” for the ISA

▪ Designate opcode(s) for I/O

▪ Register and operation encoded in instruction

❖ Memory-mapped I/O (Using LDR/STR for LC4)

▪ Assign a memory address to each device register

▪ Use conventional loads and stores

▪ Hardware intercepts loads/stores to these address

▪ No actual memory access performed
(MMU and caches get more complicated as a result)

▪ LC4 (and most other platforms) do this

▪ This allows for the I/O code to be written in C and is more 
portable to other systems.

18
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Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is what we did in LC4

19

pollev.com/tqm

char getc() {

  while(*device_status == NOT_READY) {

    // do nothing

  }

  char user_input = *device_data;

  return user_input;

}
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Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is what we did in LC4

20

pollev.com/tqm

char getc() {

  while(*device_status == NOT_READY) {

    // do nothing

  }

  char user_input = *device_data;

  return user_input;

}

Busy waiting 
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Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is trying to make this “No hang”, do not block if character is 
not available

21

pollev.com/tqm

char getc() {

  if (*device_status == NOT_READY) {

    return NOT_READY;

  }

  char user_input = *device_data;

  return user_input;

}
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Poll: how are you?

❖ Do you see any problem with this way of getting data 
from a device (e.g. file/keyboard/etc.)

▪ This is trying to make this “No hang”, do not block if character is 
not available

22

pollev.com/tqm

char getc() {

  if (*device_status == NOT_READY) {

    return NOT_READY;

  }

  char user_input = *device_data;

  return user_input;

}

Busy waiting still possible… What happens if 
the process is blocked on waiting for input?
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Interrupts

❖ Can instead have the
hardware device interrupt
the CPU to let the OS
know that some I/O
request is done

❖ Allows OS to not run
blocked processes, 
and scheduler other
processes that will
utilize the CPU

23



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Question: what?

❖ How do interrupts work to solve the problem we just 
discussed?

❖ If the CPU is not doing the work, then what is?

24
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CPU vs Co-processors

❖ The CPU is the Central Processing Unit

▪ The set of instructions that are possible is fixed, but the exact 
instructions & program changes.

▪ This allows the CPU to be more “general purpose”

❖ Our computer also has Coprocessors

▪ These are hardware devices that also perform some computation 
to supplement the CPU.

▪ Usually more specialized

▪ Examples: Graphics Processing Unit (GPU), Floating Point Unit 
(FPU), I/O processors, network cards, sound cards, etc. 

▪ What these do and how they are controlled can vary a lot.

25
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DMA

❖ To support co-processors, they are usually Direct Memory 
Access (DMA)

▪ If DMA is supported, then allowed coprocessors can directly 
access memory independently of CPU

❖ In our I/O example, this means that an I/O request looks 
something like:

▪ First the CPU sends a request to the I/O coprocessor for a storage 
medium to perform some read/write.

▪ The coprocessor can fulfill this request and access memory 
directly to store what is read or get what needs to be written

▪ The CPU does other things while the I/O request is running and 
eventually is interrupted by the coprocessor when the request is 
done. 26
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Multi-threaded Search Engine (Execution)

27
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Lecture Outline

❖ d

28
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❖ If we compile this and run it, how many times is hello 
printed?

29

int main() {

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  return EXIT_SUCCESS;

}

pollev.com/tqm
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❖ If we compile this and run it, how many times is hello 
printed?

30

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands
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❖ If we compile this and run it, how many times is hello 
printed?

31

int main() {

  if (fork() == 0) {

    printf("hello\n");

  }

  if (fork() == 0) {

    printf("hello\n");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands
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C stdio vs POSIX

❖ Why are we getting these different outputs?

❖ Let’s start with the first two. Both use different ways of 
writing to standard out.

▪ C stdio : user level portable library for standard input/output. 
Should work on any environment that has the C standard library

• E.g. printf, fprintf, fputs, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that 
are supported by many operating systems to support many OS-
level concepts (Input/Output, networking, processes, threads…)

32
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Buffered writing

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one writes with fwrite(),  the data being written is 
copied into a buffer allocated by stdio inside your process’ 
address space

▪ As some point, once enough data has been written, the buffer will 
be “flushed” to the operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the 
filesystem too often

33
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Buffered Writing Example

34

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Buffered Writing Example

35

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

Store ‘h’ into 

buffer, so that 

we do not go to 

filesystem yet
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Buffered Writing Example

36

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h

Store ‘i’ into 

buffer, so that 

we do not go to 

filesystem yet
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Buffered Writing Example

37

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h i

When we call fclose, we 

deallocate and flush 

the buffer to disk



CIS 3800, Fall 2023L19: Devices, Drivers, DMA, BufferingUniversity of Pennsylvania

Buffered Writing Example

38

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

39

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

40

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

41

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

42

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

43

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next

Two OS/File system 

accesses instead of one 
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Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a 
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

44
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Buffered Reading Example

45

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

Arrow signifies what 
will be executed next
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Buffered Reading Example

46

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

Arrow signifies what 
will be executed next

h i

Read as much as 

you can from the 

file

Copy out what 

was requested
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Buffered Reading Example

47

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

Arrow signifies what 
will be executed next

Get next char

from buffer

No need to go to file!
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Buffered Reading Example

48

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

Arrow signifies what 
will be executed next
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Buffered Reading Example

49

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not 
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and 

memory bandwidth

▪ Can potentially slow down high-performance applications, like a 
web server or database (“zero-copy”)

❖ When is buffering faster?  Slower?

50

Many small writes

Or only writing a little

Large writes
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

51

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

52

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 1

stdio buf

hello
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

53

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space
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int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello

hello

hello

Hello is printed 4 times!
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Fork Problem Explained (pt.2)

❖ Why did we get different outputs when printf printed a 
newline character after hello? 

▪ Only difference was: 
                                                     vs

❖ All we needed to do to get the expected output was add a 
\n. why?

❖ printf prints to stdout and by default stdout is line 
buffered. Meaning it flushes the buffer on a newline 
character

▪ If we ran ./prog > out.txt (redirect the output), we would get 
different output since buffering policy changes. 

55

printf("hello"); printf("hello\n");
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How to flush/modify the cstdio buffer

❖ For C stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ setvbuf

▪ Has a family of related functions like setbuf(), setbuffer(), 
setlinebuf();

▪ Can set the stream to be unbuffered or a specified buffer 

56

int fflush(FILE* stream);

int setvbuf(FILE* stream, char* buf,

            int mode, size_t size);
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How to flush POSIX?

❖ When we write to a file with POSIX it is sent to the 
filesystem, is it immediately sent to disc? No

▪ Well, we do have the block cache… so it may not be written to 
disc

▪ Since all File I/O requests go to the file system, if another process 
accesses the same file, then it should see the data even if it is the 
block cache and not in disc.

▪ If we lose power though…

57
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How to flush POSIX to disk 

❖ Two functions

▪ Fsync

▪ Flushes all in-core data and metadata to the storage medium

▪ fdatasync

▪ Sends the file data to disk

▪ Does not flush modified metadata unless necessary for data.

❖ C stdio is usually implemented using POSIX
on posix compliant systems
▪ fflush may not necessarily call fsync

58

int fsync(int fd);

int fdatasync(int fd);
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