
CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Threads & Synchronization
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Administrivia

❖Full PennOS is due Mon Nov 27

❖Will post some more info
before next lecture about the
demo & testing functionality

❖ Recitation after lecture will talk more about PennOS,
maintaining the abstraction and integrating the two
pieces of PennOS

2

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

4

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5

thread

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

6

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Threads vs. Processes

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

9

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

10

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

11

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

• Takes advantage of the multiple cores

• Can make progress on multiple tasks at once, even if only 1 core

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

12

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

13

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and
processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

14

Issues arise when we

try to shared things

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first? When did a thread get interrupted?)

15

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

16

if (!milk) {

 buy milk

}

! !

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

18

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!
19

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

20

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

21

Always prints 0, the global

counter is not shared across

processes, so the parent’s

global never changes

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

22

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

23

Usually 5000

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda
unsafe if done wrong (we are doing it wrong in this
example), more on this NOW

24

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread
while executing these three instructions?

❖ Reminder: Each thread has its own registers to work
with. Each thread would have its own R0

25

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

26

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

27

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

28

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

29

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

30

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to
execute

❖ With this example, we could get 1 as an output instead of
2, even though we executed ++sum_total twice

31

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

32

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

33

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Disabling Interrupts

❖ If data races occur when one thread is interrupted while it
is accessing some shared code….

What is we don’t switch to other threads while executing
that code?

❖ This can be done by disabling interrupts: no interrupts
means that the clock interrupt won’t go off and invoke
the scheduler

34

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to
execute

35

disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is overkill

▪ This can stop threads that aren’t trying to access the shared
resources in the critical section. May stop threads that are
executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will
starve

▪ In a multi-core environment, this gets complicated

36

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Intertupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

37

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

38

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

 int me = arg;

 flag[me] = true;

 turn = me;

 while((flag[1-me] == true) && (turn == me)) { }

 ++sum_total;

 flag[me] = false;

}

Check the index of the other thread

pollev.com/tqm

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the
critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value
is turn = 1. P0 will get to run first.

39

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Explanation

flag[0] = true

Thread 0 Thread 1

turn = 0

while(flag[1] == true

 && turn == 0)

flag[1] = true

turn = 1

++sum+total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 0 came after turn = 1
// the turn variable is set to 0

turn = 0

while(flag[0] == true

 && turn == 1)

turn = ?

turn = 0

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be
interrupted before or after, but not “during” when turn may have
some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order
laid out in the code

41

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data
are atomic if the operation(s) are indivisible, that no other
operation(s) on that same data can interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of
data bases and ACID.

42

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know what t is set before g is set?

43

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know what t is set before g is set?

44

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different
ordering if it does not appear that it will affect the
semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order
than what the compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and
“Memory Order”

45

g = true; t = arg;

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or
compiler to create a “memory barrier”

▪ “all memory accesses before the barrier are guaranteed to
happen before the memory accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered
by the compiler and the CPU

46

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

47

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

48

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating
system to help ensure synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to
ensure that acquiring the lock is atomic (more on TSL in a
little bit)

49

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

50

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

51

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code
and to total?

▪ Likely slower than both– only 1 thread can increment at a time,
and must deal with checking the lock and switching between
threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

• See total_locking_better.c
52

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

53

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

TSL

❖ TSL stands for Test and Set Lock, sometimes just called
test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be
atomic at the hardware level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R

54

CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

TSL to implement Mutex

❖ A mutex is pretty much this:

55

pthread_mutex_lock(lock) {

 prev_value = TSL(lock);

 // if prev_value = 1, then it was already locked

 while (prev_value == 1) {

 block();

 prev_value = TSL(lock);

 }

}

pthread_mutex_unlock(lock) {

 lock = 0;

 wakeup_blocked_threads(lock);

}

	Default Section
	Slide 1: Threads & Synchronization Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Lecture Outline
	Slide 5: Introducing Threads
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: POSIX Threads (pthreads)
	Slide 10: Creating and Terminating Threads
	Slide 11: What To Do After Forking Threads?
	Slide 12: Why Threads?
	Slide 13: Lecture Outline
	Slide 14: Shared Resources
	Slide 15: Data Races
	Slide 16: Data Race Example
	Slide 17: Data Race Example
	Slide 18: Data Race Example
	Slide 19: Threads and Data Races
	Slide 20: Poll: how are you?
	Slide 21: Poll: how are you?
	Slide 22: Poll: how are you?
	Slide 23: Poll: how are you?
	Slide 24: Demos:
	Slide 25: Increment Data Race
	Slide 26: Increment Data Race
	Slide 27: Increment Data Race
	Slide 28: Increment Data Race
	Slide 29: Increment Data Race
	Slide 30: Increment Data Race
	Slide 31: Increment Data Race
	Slide 32: Synchronization
	Slide 33: Lecture Outline
	Slide 34: Disabling Interrupts
	Slide 35: Disabling Interrupts
	Slide 36: Disabling Interrupts
	Slide 37: Lecture Outline
	Slide 38: Software Synchronization
	Slide 39: Peterson’s Algorithm
	Slide 40: Explanation
	Slide 41: Peterson’s Assumptions
	Slide 42: Atomicity
	Slide 43: Aside: Instruction & Memory Ordering
	Slide 44: Aside: Instruction & Memory Ordering
	Slide 45: Aside: Instruction & Memory Ordering
	Slide 46: Aside: Memory Barriers
	Slide 47: Lecture Outline
	Slide 48: Lock Synchronization
	Slide 49: Lock API
	Slide 50: Milk Example – What is the Critical Section?
	Slide 51: pthreads and Locks
	Slide 52: pthread Mutex Examples
	Slide 53: Lecture Outline
	Slide 54: TSL
	Slide 55: TSL to implement Mutex

