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Administrivia

❖Full PennOS is due Mon Nov 27

❖Will post some more info 
before next lecture about the 
demo & testing functionality

❖ Recitation after lecture will talk more about PennOS, 
maintaining the abstraction and integrating the two 
pieces of PennOS
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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pollev.com/tqm
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL
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Introducing Threads

❖ Separate the concept of a process from the “thread of 
execution” 

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream 
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5

thread
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it

6
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Threads vs. Processes
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Threads vs. Processes
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POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread 
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

9
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Creating and Terminating Threads

❖  

▪ Creates a new thread into *thread, with attributes *attr 
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check 
against error constants)

▪ The new thread runs start_routine(arg)

10

int pthread_create(

        pthread_t* thread,

        const pthread_attr_t* attr,

        void* (*start_routine)(void*), 

        void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer! 

Takes & returns void* 

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create
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What To Do After Forking Threads?

❖  

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval
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int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child 

thread to exit, gets the child’s 

return value, and child thread is 

cleaned up

start_routine

continues

parentcreate join
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

• Takes advantage of the multiple cores

• Can make progress on multiple tasks at once, even if only 1 core

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

12
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL
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Shared Resources

❖ Some resources are shared between threads and 
processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

14

Issues arise when we 

try to shared things
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Data Races

❖ Two memory accesses form a data race if different 
threads access the same location, and at least one is a 
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance 
(which thread ran first? When did a thread get interrupted?)

15
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Data Race Example

❖ If your fridge has no milk, 
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

16

if (!milk) {

  

  buy milk

  

}

! !
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {

  if (!milk) {

    leave note

    buy milk

    remove note

  }

}

pollev.com/tqm
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…
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if (!note) {

  if (!milk) {

    leave note

    buy milk

    remove note

  }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other 

possible scenarios 

that result in 

multiple milks

We can be interrupted

between checking note and 

leaving note 

pollev.com/tqm
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Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, 
depending on the specifics of the data structure

❖ Example:  two threads try to read from and write to the 
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head 
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
19
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Poll: how are you?

❖ What does this print?

20

pollev.com/tqm
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Poll: how are you?

❖ What does this print?

21

Always prints 0, the global 

counter is not shared across 

processes, so the parent’s 

global never changes

pollev.com/tqm
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Poll: how are you?

❖ What does this print?

22

pollev.com/tqm
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Poll: how are you?

❖ What does this print?

23

Usually 5000

pollev.com/tqm
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Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a 
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in 
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda 
unsafe if done wrong (we are doing it wrong in this 
example), more on this NOW

24
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Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread 
while executing these three instructions?

❖ Reminder: Each thread has its own registers to work 
with. Each thread would have its own R0

25

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

++sum_total
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 

26

LOAD  sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 

27

LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 

28

LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1



CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 
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LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 
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LOAD  sum_total into R0

ADD   R0 R0 #1

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to 
execute 

❖ With this example, we could get 1 as an output instead of 
2, even though we executed ++sum_total twice

31

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1



CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more) 
concurrently running threads from interfering with each 
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner 
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data 
structures (informally, “nothing bad happens”)

32
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

33
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Disabling Interrupts

❖ If data races occur when one thread is interrupted while it 
is accessing some shared code….

What is we don’t switch to other threads while executing 
that code?

❖ This can be done by disabling interrupts: no interrupts 
means that the clock interrupt won’t go off and invoke 
the scheduler

34
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Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to 
execute 

35

disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();
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Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is overkill

▪ This can stop threads that aren’t trying to access the shared 
resources in the critical section. May stop threads that are 
executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will 
starve

▪ In a multi-core environment, this gets complicated

36
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Intertupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL
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Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

38

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

  int me = arg;

  flag[me] = true;

  turn = me;

  while((flag[1-me] == true) && (turn == me)) { }

  ++sum_total;

  flag[me] = false;

}

Check the index of the other thread 

pollev.com/tqm
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the 
critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value 
is turn = 1. P0 will get to run first. 

39
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Explanation

flag[0] = true

Thread 0 Thread 1

turn = 0

while(flag[1] == true 

        && turn == 0)

flag[1] = true

turn = 1

++sum+total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 0 came after turn = 1
// the turn variable is set to 0

turn = 0

while(flag[0] == true 

        && turn == 1)

turn = ?

turn = 0
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Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be 
interrupted before or after, but not “during” when turn may have 
some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order 
laid out in the code

41
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Atomicity

❖ Atomicity: An operation or set of operations on some data 
are atomic if the operation(s) are indivisible, that no other 
operation(s) on that same data can interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of 
data bases and ACID.

42
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Aside: Instruction & Memory Ordering

❖ Do we know what  t is set before g is set?

43

bool g = false;

int t = 0

void some_func(int arg) {

  t = arg;

  g = true;

}
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Aside: Instruction & Memory Ordering

❖ Do we know what  t is set before g is set?

44

bool g = false;

int t = 0

void some_func(int arg) {

  t = arg;

  g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns
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Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different 
ordering if it does not appear that it will affect the 
semantics of the function

▪ Since                                    is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order 
than what the compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and 
“Memory Order”

45

g = true; t = arg;
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Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or 
compiler to create a “memory barrier”

▪ “all memory accesses before the barrier are guaranteed to 
happen before the memory accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered 
by the compiler and the CPU

46
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL
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Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that 
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

48

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:
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Lock API

❖ Locks are constructs that are provided by the operating 
system to help ensure synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to 
ensure that acquiring the lock is atomic (more on TSL in a 
little bit)

49
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Milk Example – What is the Critical Section?

❖ What if we use a lock on the 
refrigerator?

▪ Probably overkill – what if 
roommate wanted to get eggs?

❖ For performance reasons, only 
put what is necessary in the 
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

50

fridge.lock()

if (!milk) {

  buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

  buy milk

}

milk_lock.unlock()



CIS 3800, Fall 2023L21: Threads & Data RacesUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖  

▪ “Uninitializes” a mutex – clean up when done

51

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

                const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired 
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pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code 
and to total?

▪ Likely slower than both– only 1 thread can increment at a time, 
and must deal with checking the lock and switching between 
threads

▪ One possible fix:  each thread increments a local variable and then 
adds its value (once!) to the shared variable at the end

• See total_locking_better.c
52
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Lecture Outline

❖ Threads Quick Refresher

❖ Shared Resources & Data Races

❖ Disable Interrupts

❖ Peterson’s Algorithm

❖ Mutex

❖ TSL

53
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TSL

❖ TSL stands for Test and Set Lock, sometimes just called 
test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be 
atomic at the hardware level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R 

54
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TSL to implement Mutex

❖ A mutex is pretty much this:

55

pthread_mutex_lock(lock) {

   prev_value = TSL(lock);

   

   // if prev_value = 1, then it was already locked

   while (prev_value == 1) {

      block();

      prev_value = TSL(lock);

   }

}

pthread_mutex_unlock(lock) {

  lock = 0;

  wakeup_blocked_threads(lock);

}
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