
CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variables & Concurrency
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Administrivia

❖Full PennOS is due Mon Nov 27
▪ You will schedule a time to meet with your TA to

demonstrate your working code

▪ Some info will be posted on the demo & testing
functionality soon

❖ Check-in due before Lecture next week

❖ Next week:
Will have lecture on Tuesday
No Thursday Lecture
Some OH will be cancelled, will update ASAP

2

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

4

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

int g = 0;
void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {
g = g + k;

}
printf("g = %d\n", g);
return NULL;

}

int main() {
pthread_t t1, t2;
int ignore;
ignore = pthread_create(&t1, NULL, &worker, NULL);
ignore = pthread_create(&t2, NULL, &worker, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

} 5

pollev.com/tqm

What is the range of values that g can have
at the end of the program?

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

int g = 0;
void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {
g = g + k;

}
printf("g = %d\n", g);
return NULL;

}

int main() {
pthread_t t1, t2;
int ignore;
ignore = pthread_create(&t1, NULL, &worker, NULL);
ignore = pthread_create(&t2, NULL, &worker, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

} 6

What is the range of values that g can have
at the end of the program?

 4 5 6 7 8 9 10 11 12

How to get 4 and 5 is tough to see. What you should

take away: can't guarantee ordering/interleaving of

threads. Need to be careful with shared data.

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 1

g = 4 7

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 2

Store 0 in reg

Write g =1

Store 1 in
reg

Write g =4

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

12

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads
execute in a timely manner, despite any contention on
shared resources.

❖ When is called, the calling
thread blocks (stops executing) until it can acquire the
lock.

▪ What happens if the thread can never acquire the lock?

13

pthread_mutex_lock();

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads
cannot acquire that lock

❖ See release_locks.c

▪ Example where locks are not released once critical section is
completed.

14

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.c

❖ Note: there are many algorithms for detecting/preventing
deadlocks

15

Neither thread can make progress

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it
has already acquired?

❖ See recursive_deadlock.c

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until
the lock is released

16

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked
if the thread already has locked it. These locks are called
recursive locks (sometimes called re-entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of
times it was acquired

❖ Has its uses, but generally discouraged.

17

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

18

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least
one consumer.

▪ The producer threads create some data that is then added to a
shared data structure

▪ Consumers will process and remove data from the shared data
structure

❖ We need to make sure that the threads play nice

19

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t
have to write our own data structure. This is not legal C

❖ Deque is a double ended queue, you can push to the front
or back and pop from the front or back

20

// global deque of integers

// will be initialized to be empty

deque<int> dq;

int main() {

 dq.push_back(3); // adds 3

 int val = dq.at(0); // access index 0

 dq.pop_front() // delete first element

 printf("%d\n", val); // should print 3

}

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer Consumer Example

❖ Does this work?

❖ Assume that two
threads are
created, one
assigned to each
function

21

deque<int> dq;

void* producer_thread(void* arg) {

 while (true) {

 dq.push_back(long_computation());

 }

}

void* consumer_thread(void* arg) {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer Consumer Example

❖ How do we use
mutex to fix this?
To make sure that
the threads access
dq safely.

▪ You are only allowed
to add calls to
pthread_mutex_lock

and
pthread_mutex_unlock

▪ Can add other
mutexes if needed

22

deque<int> dq;

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

 while (true) {

 dq.push_back(long_computation());

 }

}

void* consumer_thread(void* arg) {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer Consumer Example

❖ Producer needs to
lock around the
deque to make sure
consumer doesn’t
access it while we
push something

23

deque<int> dq;

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&dq_lock);

 dq.push_back(long_computation());

 pthread_mutex_unlock(&dq_lock);

 }

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer Consumer Example

❖ Consumer also
locks the deque.

❖ Need to lock and
unlock in the loop
to give the
producer a chance
to take the lock and
add something

24

deque<int> dq;

pthread_mutex_t dq_lock;

void* consumer_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&dq_lock);

 while (dq.size() == 0) {

 pthread_mutex_unlock(&dq_lock);

 // do nothing

 pthread_mutex_lock(&dq_lock);

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 pthread_mutex_unlock(&dq_lock);

 }

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Any issue?

❖ The code is correct, but do we notice anything wrong with
this code?

❖ Maybe a common inefficiency that I have told you about
several times before (just in other contexts?)

❖ Then consumer code “busy waits” when there is nothing
for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks
make the busy waiting of the consumers sequential and use more
CPU resources.

25

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

26

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

27

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

28

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

29

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

30

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

31

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

32

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

33

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

34

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in
this example

35

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Revisiting Producer Consumer

❖ Demo: producer_and_consumer.cpp

▪ Original producer and consumer code

▪ One thread reads a line from stdin and puts it in the deque

▪ The other thread gets that string and prints it

▪ The consumer thread spins while doing this

❖ Demo: cond.cpp

▪ Consumer and producer uses condition variable

▪ Consumer waits if there is no value to process

▪ Producer notifies any sleeping threads

▪ No more spinning ☺

36

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Producer Consumer Example

❖ We still need a
while loop in the
consumer, even
with condition
variables.

❖ Why is this
needed? Why may
our code be
incorrect if we
don’t have one?

37

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&dq_lock);

 while (dq.size() == 0) {

 pthread_cond_wait(&dq_cond,

 &dq_lock);

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 pthread_mutex_unlock(&dq_lock);

 }

}

pollev.com/tqm

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

38

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Monitors

❖ Monitors are a higher-level synchronization concept.

❖ A Monitor is associated with an object and enforces that
only one thread can access data/call the functions of an
object at a time.

❖ A monitor is made up of a mutex and a condition variable.

❖ Every Object in java is/has a monitor.

39

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Java Monitor Example

40

public class obj {

 private List<String> data;

 public synchronized String get() {

 while (this.data.size() == 0) {

 wait();

 // Ommitted Java exception handling bs

 }

 return this.data.remove(0);

 }

 public synchronized void set(String new_data) {

 this.data.add(new_data);

 notifyAll();

 }

}

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Monitor vs Condition Variables

❖ What we implemented with condition variables was
essentially a monitor. But condition variables are not
restricted to being used in that context.

❖ Monitors in Java work in a lot of cases and can help
abstract away some of the details with synchronization

❖ In some cases, a monitor would not make the most sense,
but you can still use condition variables to solve the issue.

❖ Monitors are a concept, condition variables is
an implementation detail 41

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

42

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Readers / Writers Problem

❖ What if we have some shared data/object and threads
can either read or write to the shared data

❖ How many readers can we have at a time?

▪ Any number of readers, as long as no one is writing, we can have
an unlimited number of readers.

❖ How many writers can we have at a time?

▪ If a thread is writing to the shared data, then only that thread can
have access to the shared data

❖ How do we support multiple readers but single writer?
43

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Reader/Writers

❖ We need some metadata, more than just a lock and a
cond. Consider the following solutions.

44

// These would normally be put

// into a rdwr_lock structure

int num_readers = 0; // number of active readers

int writers_waiting = 0; // number of writers waiting

bool writer_active = false; // is there a writer active?

// lock to make sure only one thread can access &

// modify the metadata at a time

pthread_mutex_t lock;

// allows a reader/writer to wait until

// it is ok to read/write

pthread_mutex_t cond;

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Reader/Writers Demo

❖ Demo: rw_lock.c

▪ Lots of code for how we grant access to readers & writers

❖ Any thoughts on how we could make this better?

▪ Any issues you notice? It is correct, but are there issues with
starvation, wakeups, liveness, etc?

▪ Hint: there are issues

45

CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

pthread_rwlock

❖ Pthread provides a read/write lock implementation that
handles this problem for us and hides many of the dirty
implementation details

❖ Very similar to pthread_mutex, but two types of locking
▪ pthread_rwlock_rdlock(…); // lock as a reader

▪ pthread_rwlock_wrlock(…); // lock as a writer

46

	Default Section
	Slide 1: Condition Variables & Concurrency Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Lecture Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Threads & Mutex
	Slide 9: Threads & Mutex
	Slide 10: Threads & Mutex
	Slide 11: Threads & Mutex
	Slide 12: Lecture Outline
	Slide 13: Liveness
	Slide 14: Liveness Failure: Releasing locks
	Slide 15: Liveness Failure: Deadlocks
	Slide 16: Liveness Failure: Mutex Recursion
	Slide 17: Aside: Recursive Locks
	Slide 18: Lecture Outline
	Slide 19: Producer & Consumer Problem
	Slide 20: Aside: C++ deque
	Slide 21: Producer Consumer Example
	Slide 22: Producer Consumer Example
	Slide 23: Producer Consumer Example
	Slide 24: Producer Consumer Example
	Slide 25: Any issue?
	Slide 26: Lecture Outline
	Slide 27: Condition Variables
	Slide 28: pthreads and condition variables
	Slide 29: pthreads and condition variables
	Slide 30: Condition Variable & Mutex Visualization
	Slide 31: Condition Variable & Mutex Visualization
	Slide 32: Condition Variable & Mutex Visualization
	Slide 33: Condition Variable & Mutex Visualization
	Slide 34: Condition Variable & Mutex Visualization
	Slide 35: Condition Variable & Mutex Visualization
	Slide 36: Revisiting Producer Consumer
	Slide 37: Producer Consumer Example
	Slide 38: Lecture Outline
	Slide 39: Monitors
	Slide 40: Java Monitor Example
	Slide 41: Monitor vs Condition Variables
	Slide 42: Lecture Outline
	Slide 43: Readers / Writers Problem
	Slide 44: Reader/Writers
	Slide 45: Reader/Writers Demo
	Slide 46: pthread_rwlock

