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Administrivia

❖Full PennOS is due Mon Nov 27
▪ You will schedule a time to meet with your TA to 

demonstrate your working code

▪ Some info will be posted on the demo & testing 
functionality soon

❖ Check-in due before Lecture next week

❖ Next week:
Will have lecture on Tuesday
No Thursday Lecture
Some OH will be cancelled, will update ASAP
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem
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int g = 0;
void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {
g = g + k;

}
printf("g = %d\n", g);
return NULL;

}

int main() {
pthread_t t1, t2;
int ignore;
ignore = pthread_create(&t1, NULL, &worker, NULL);
ignore = pthread_create(&t2, NULL, &worker, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

} 5

pollev.com/tqm

What is the range of values that g can have 
at the end of the program?
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int g = 0;
void *worker(void *ignore) {

for (int k = 1; k <= 3; k++) {
g = g + k;

}
printf("g = %d\n", g);
return NULL;

}

int main() {
pthread_t t1, t2;
int ignore;
ignore = pthread_create(&t1, NULL, &worker, NULL);
ignore = pthread_create(&t2, NULL, &worker, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

} 6

What is the range of values that g can have 
at the end of the program?

 4      5      6      7      8      9      10      11      12 

How to get 4 and 5 is tough to see. What you should 

take away: can't guarantee ordering/interleaving of 

threads. Need to be careful with shared data.

pollev.com/tqm
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reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 1

g = 4 7

reg ⇐ g

g ⇐ reg + 1

reg ⇐ g

g ⇐ reg + 2

reg ⇐ g

g ⇐ reg + 3

Thread 2

Store 0 in reg

Write g =1

Store 1 in 
reg

Write g =4

pollev.com/tqm
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm



CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate 
threads. Note that these are not thread entry points, just functions used by 
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

12
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Liveness

❖ Liveness: A set of properties that ensure that threads 
execute in a timely manner, despite any contention on 
shared resources.

❖ When is called, the calling 
thread blocks (stops executing) until  it can acquire the 
lock.

▪ What happens if the thread can never acquire the lock?

13

pthread_mutex_lock();
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Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads 
cannot acquire that lock

❖ See release_locks.c

▪ Example where locks are not released once critical section is 
completed.

14
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Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two 
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.c

❖ Note: there are many algorithms for detecting/preventing 
deadlocks

15

Neither thread can make progress 
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Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it 
has already acquired?

❖ See recursive_deadlock.c

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until 
the lock is released

16
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Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked 
if the thread already has locked it. These locks are called 
recursive locks (sometimes called re-entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of 
times it was acquired

❖ Has its uses, but generally discouraged.

17
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

18
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Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least 
one consumer.

▪ The producer threads create some data that is then added to a 
shared data structure

▪ Consumers will process and remove data from the shared data 
structure

❖ We need to make sure that the threads play nice 

19
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Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t 
have to write our own data structure.  This is not legal C

❖ Deque is a double ended queue, you can push to the front 
or back and pop from the front or back

20

// global deque of integers

// will be initialized to be empty

deque<int> dq;

int main() {

  dq.push_back(3);      // adds 3

  int val = dq.at(0);   // access index 0

  dq.pop_front()        // delete first element

  printf("%d\n", val);  // should print 3

}
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Producer Consumer Example

❖ Does this work?

❖ Assume that two 
threads are 
created, one 
assigned to each 
function

21

deque<int> dq;

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}
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Producer Consumer Example

❖ How do we use 
mutex to fix this? 
To make sure that 
the threads access 
dq safely.

▪ You are only allowed 
to add calls to 
pthread_mutex_lock

and 
pthread_mutex_unlock

▪ Can add other 
mutexes if needed

22

deque<int> dq;

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}

pollev.com/tqm
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Producer Consumer Example

❖ Producer needs to 
lock around the 
deque to make sure 
consumer doesn’t 
access it while we 
push something

23

deque<int> dq;

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&dq_lock);

    dq.push_back(long_computation());

    pthread_mutex_unlock(&dq_lock); 

  }

}

pollev.com/tqm
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Producer Consumer Example

❖ Consumer also 
locks the deque.

❖ Need to lock and 
unlock in the loop 
to give the 
producer a chance 
to take the lock and 
add something

24

deque<int> dq;

pthread_mutex_t dq_lock;

void* consumer_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&dq_lock);

    while (dq.size() == 0) {

      pthread_mutex_unlock(&dq_lock);

      // do nothing

      pthread_mutex_lock(&dq_lock);

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

    pthread_mutex_unlock(&dq_lock);

  }

}

pollev.com/tqm
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Any issue?

❖ The code is correct, but do we notice anything wrong with 
this code?

❖ Maybe a common inefficiency that I have told you about 
several times before (just in other contexts?)

❖ Then consumer code “busy waits” when there is nothing 
for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks 
make the busy waiting of the consumers sequential and use more 
CPU resources. 

25
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

26
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Condition Variables

❖ Variables that allow for a thread to wait until they are 
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily 
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume 
execution

27
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

28

int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition 
variable. Once unblocked (by one of the functions below), 
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

29

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

30

Critical SectionEntrance Exit

sleeping 
room

Waiting
room
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

31

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock 
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

32

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock 



CIS 3800, Fall 2023L22: Classic Concurrency Problems & condUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

33

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in 
state, it can “go to sleep” until someone wakes it up later.
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

34

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call 
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in 
this example

35

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock
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Revisiting Producer Consumer

❖ Demo: producer_and_consumer.cpp

▪ Original producer and consumer code

▪ One thread reads a line from stdin and puts it in the deque

▪ The other thread gets that string and prints it

▪ The consumer thread spins while doing this

❖ Demo: cond.cpp

▪ Consumer and producer uses condition variable

▪ Consumer waits if there is no value to process

▪ Producer notifies any sleeping threads

▪ No more spinning ☺

36
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Producer Consumer Example

❖ We still need a 
while loop in the 
consumer, even 
with condition 
variables.

❖ Why is this 
needed? Why may 
our code be 
incorrect if we 
don’t have one?

37

deque<int> dq;

pthread_mutex_t dq_lock;

pthread_cond_t dq_cond;

void* consumer_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&dq_lock);

    while (dq.size() == 0) {

      pthread_cond_wait(&dq_cond,

                        &dq_lock);

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

    pthread_mutex_unlock(&dq_lock);

  }

}

pollev.com/tqm
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

38
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Monitors

❖ Monitors are a higher-level synchronization concept.

❖ A Monitor is associated with an object and enforces that 
only one thread can access data/call the functions of an 
object at a time.

❖ A monitor is made up of a mutex and a condition variable.

❖ Every Object in java is/has a monitor.

39
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Java Monitor Example

40

public class obj {

  private List<String> data;

  public synchronized String get() {

     while (this.data.size() == 0) {

        wait();

        // Ommitted Java exception handling bs

     }

     return this.data.remove(0);

  }

  public synchronized void set(String new_data) {

     this.data.add(new_data);

     notifyAll();

  }

}
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Monitor vs Condition Variables

❖ What we implemented with condition variables was 
essentially a monitor. But condition variables are not 
restricted to being used in that context. 

❖ Monitors in Java work in a lot of cases and can help 
abstract away some of the details with synchronization

❖ In some cases, a monitor would not make the most sense, 
but you can still use condition variables to solve the issue.

❖ Monitors are a concept, condition variables is 
an implementation detail 41
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Lecture Outline

❖ Data Race & Mutex Practice

❖ Intro to Deadlocks

❖ Producer & Consumer Problem

❖ Condition Variables

❖ Monitors

❖ Reader/Writer Problem

42
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Readers / Writers Problem

❖ What if we have some shared data/object and threads 
can either read or write to the shared data

❖ How many readers can we have at a time?

▪ Any number of readers, as long as no one is writing, we can have 
an unlimited number of readers.

❖ How many writers can we have at a time?

▪ If a thread  is writing to the shared data, then only that thread can 
have access to the shared data

❖ How do we support multiple readers but single writer?
43
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Reader/Writers

❖ We need some metadata, more than just a lock and a 
cond. Consider the following solutions.

44

// These would normally be put

// into a rdwr_lock structure

int num_readers = 0;   // number of active readers

int writers_waiting = 0;  // number of writers waiting

bool writer_active = false;  // is there a writer active?

// lock to make sure only one thread can access &

// modify the metadata at a time

pthread_mutex_t lock;  

// allows a reader/writer to wait until

// it is ok to read/write

pthread_mutex_t cond;
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Reader/Writers Demo

❖ Demo: rw_lock.c

▪ Lots of code for how we grant access to readers & writers

❖ Any thoughts on how we could make this better?

▪ Any issues you notice? It is correct, but are there issues with 
starvation, wakeups, liveness, etc?

▪ Hint: there are issues

45
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pthread_rwlock

❖ Pthread provides a read/write lock implementation that 
handles this problem for us and hides many of the dirty 
implementation details

❖ Very similar to pthread_mutex, but two types of locking
▪ pthread_rwlock_rdlock(…);  // lock as a reader

▪ pthread_rwlock_wrlock(…);  // lock as a writer

46
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