
CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Concurrency Wrap-up
Deadlock Handling
Computer Operating Systems, Fall 2023
Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Administrivia

❖Full PennOS is due Wed Nov 29
▪ You will schedule a time to meet with your TA to

demonstrate your working code

▪ Can submit via gradescope now

▪ Reach out to TA’s to schedule PennOS Demo

❖ Check-in due before Lecture next week

❖ Recitation after class is open OH

2

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Lecture Outline

❖ Deadlock Handling (start)

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law

4

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

5

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

6Ostriches don’t actually do this, but it is an old myth

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive
to handle, and/or not a fatal error

❖ Used in real world contexts, there is a real cost to tracking
down every possible deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to
do, slows things down

7

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that
avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd
philosophers

❖ Exhaustive Search Approach

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without
restrictions)

8

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Detection

❖ If we can’t guarantee deadlocks won’t happen, we can
instead try to detect a deadlock just before it will happen
and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata
and graph theory

▪ The intervention/recovery. We typically want some sort of way to
“recover” to a safe state when we detect a deadlock is going to
happen

9

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Detection Algorithms

❖ The common idea is to think of the threads and resources
as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem
with many solutions.

10

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Deadlock Detection Example

❖ Consider the following example with 5 threads and 5
resources that require mutual exclusion is this a
deadlock?

▪ Thread 1 has R2 but wants R1

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

11

pollev.com/tqm

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread
form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow
pointing at the resource from the thread trying to acquire it

12

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

13

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

14

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

15

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

16

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

17

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

18

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Alternate graph

❖ Instead of also representing resources as nodes, we can
have a “wait for” graph, showing how threads are waiting
on each other

19

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a

resource held by T2

and T4 is waiting on T1

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Recovery after Detection

❖ Preemption:

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is
detected then go back to the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the
rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no
deadlock

▪ Not safe, but it is simple
20

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock
issues, but there is a cost to memory and CPU to store the
necessary information and check for deadlock

❖ This is why sometimes the ostrich algorithm is preferred

21

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Avoidance

❖ Instead of detecting a deadlock when it happens and
having expensive rollbacks, we may want to instead avoid
deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it
will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the
request. The calling thread can try again later

• If there is no deadlock, then the thread can acquire the resources and
complete its task

▪ The calling thread later releases resources as they are done with
them 22

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources
need to be acquired before an action is taken by a thread, could
hurt parallelizability

• Consider a thread that does a very expensive computation with many
shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may
need it cannot access it

23

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple
copies of resources, or a finite number of people can
access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can
watch if you want to know more

24

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Lecture Outline

❖ Deadlock Handling (start)

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law

25

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Parallel Algorithms

❖ One interesting applications of threads is for faster
algorithms

❖ Common Example: Merge sort

26

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an
unsorted array

▪ Consider the two sorted arrays:
2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n))
runtime.

❖ We recurse log2(N) times, each recursive “layer” does
O(N) work

43

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 merge_sort(arr, lo, mid); // sort the bottom half

 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

44

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 45

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Parallel Algos:

❖ We can define T(n) to be the running time of our
algorithm

❖ We can split up our work between two parts, the part
done sequentially, and the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)
46

Will not test you on this

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further
optimizations that can be done to reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I
am just giving you a sneak peek

47

Will not test you on this

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Amdahl's Law

❖ For most algorithms, there are parts that parallelize well
and parts that don’t. This causes adding threads to have
diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling
threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S) // (1-S) is the sequential part

48

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the
parallelizable part, we get

▪ TP = (1-S) +
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =

1

1−𝑆+
𝑆

𝑃

49

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and
our algorithm is only 2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

50

CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware.

❖ Number of Hardware Threads: The number of threads can
genuinely run in parallel on hardware

❖ We may be able to create a huge number of threads, but
only run a few (e.g. 4) in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

51

	Default Section
	Slide 1: Concurrency Wrap-up Deadlock Handling Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Lecture Outline
	Slide 5: Deadlock Handling: Ostrich Algorithm
	Slide 6: Deadlock Handling: Ostrich Algorithm
	Slide 7: Deadlock Handling: Ostrich Algorithm
	Slide 8: Deadlock Handling: Prevention
	Slide 9: Detection
	Slide 10: Detection Algorithms
	Slide 11: Deadlock Detection Example
	Slide 12: Resource Allocation Graph
	Slide 13: Resource Allocation Graph Example
	Slide 14: Resource Allocation Graph Example
	Slide 15: Resource Allocation Graph Example
	Slide 16: Resource Allocation Graph Example
	Slide 17: Resource Allocation Graph Example
	Slide 18: Resource Allocation Graph Example
	Slide 19: Alternate graph
	Slide 20: Recovery after Detection
	Slide 21: Overall Costs
	Slide 22: Avoidance
	Slide 23: Avoidance
	Slide 24: Aside: Bankers Algorithm
	Slide 25: Lecture Outline
	Slide 26: Parallel Algorithms
	Slide 27: Merge Sort: Core Ideas
	Slide 28: Merge Sort: Core Ideas
	Slide 29: Merge Sort: Core Ideas
	Slide 30: Merge Sort: Core Ideas
	Slide 31: Merge Sort: Core Ideas
	Slide 32: Merge Sort: Core Ideas
	Slide 33: Merge Sort: Core Ideas
	Slide 34: Merge Sort: Core Ideas
	Slide 35: Merge Sort: Core Ideas
	Slide 36: Merge Sort: High Level Example
	Slide 37: Merge Sort: High Level Example
	Slide 38: Merge Sort: High Level Example
	Slide 39: Merge Sort: High Level Example
	Slide 40: Merge Sort: High Level Example
	Slide 41: Merge Sort: High Level Example
	Slide 42: Merge Sort: High Level Example
	Slide 43: Merge Sort Algorithmic Analysis
	Slide 44: Merge Sort Algorithmic Analysis
	Slide 45: Merge Sort Algorithmic Analysis
	Slide 46: Parallel Algos:
	Slide 47: Parallel Algos:
	Slide 48: Amdahl's Law
	Slide 49: Amdahl's Law
	Slide 50: Amdahl's Law
	Slide 51: Limitation: Hardware Threads

