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Administrivia

❖Full PennOS is due Wed Nov 29
▪ You will schedule a time to meet with your TA to 

demonstrate your working code

▪ Can submit via gradescope now

▪ Reach out to TA’s to schedule PennOS Demo

❖ Check-in due before Lecture next week

❖ Recitation after class is open OH
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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Lecture Outline

❖ Deadlock Handling (start)

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law 
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Deadlock Handling: Ostrich Algorithm
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Deadlock Handling: Ostrich Algorithm

6Ostriches don’t actually do this, but it is an old myth
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Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive 
to handle, and/or not a fatal error

❖ Used in real world contexts, there is a real cost to tracking 
down every possible deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to 
do, slows things down
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Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that 
avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd 
philosophers

❖ Exhaustive Search Approach 

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without 
restrictions)

8
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Detection

❖ If we can’t guarantee deadlocks won’t happen, we can 
instead try to detect a deadlock just before it will happen 
and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata 
and graph theory

▪ The intervention/recovery. We typically want some sort of way to 
“recover” to a safe state when we detect a deadlock is going to 
happen

9
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Detection Algorithms

❖ The common idea is to think of the threads and resources 
as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem 
with many solutions.
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Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 
resources that require mutual exclusion is this a 
deadlock?

▪ Thread 1 has R2 but wants R1 

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

11
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Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread 
form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow 
pointing at the resource from the thread trying to acquire it

12
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example
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Resource Allocation Graph Example
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Resource Allocation Graph Example
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Resource Allocation Graph Example
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Alternate graph

❖ Instead of also representing resources as nodes, we can 
have a “wait for” graph, showing how threads are waiting 
on each other
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Recovery after Detection

❖ Preemption: 

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is 
detected then go back to the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the 
rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no 
deadlock

▪ Not safe, but it is simple
20
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Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock 
issues, but there is a cost to memory and CPU to store the 
necessary information and check for deadlock

❖ This is why sometimes the ostrich algorithm is preferred

21
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Avoidance

❖ Instead of detecting a deadlock when it happens and 
having expensive rollbacks, we may want to instead avoid 
deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it 
will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the 
request. The calling thread can try again later

• If there is no deadlock, then the thread can acquire the resources and 
complete its task

▪ The calling thread later releases resources as they are done with 
them 22
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Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources 
need to be acquired before an action is taken by a thread, could 
hurt parallelizability

• Consider a thread that does a very expensive computation with many 
shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may 
need it cannot access it

23
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Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple 
copies of resources, or a finite number of people can 
access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can 
watch if you want to know more

24
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Lecture Outline

❖ Deadlock Handling (start)

▪ Ostrich

▪ Prevention

▪ Detection

▪ Avoidance

❖ Parallel Analysis

▪ Recurrences

▪ Amdahl's Law 
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Parallel Algorithms 

❖ One interesting applications of threads is for faster 
algorithms

❖ Common Example: Merge sort

26
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an 
unsorted array

▪ Consider the two sorted arrays: 
2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) 
runtime.

❖ We recurse log2(N) times, each recursive “layer” does 
O(N) work 

43

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}



CIS 3800, Fall 2023L24: Deadlock HandlingUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

44

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 45

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Parallel Algos:

❖ We can define T(n) to be the running time of our 
algorithm

❖ We can split up our work between two parts, the part 
done sequentially, and the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)
46

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further 
optimizations that can be done to reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I 
am just giving you a sneak peek

47

Will not test you on this
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Amdahl's Law

❖ For most algorithms, there are parts that parallelize well 
and parts that don’t. This causes adding threads to have 
diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling 
threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S)  // (1-S) is the sequential part

48
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Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the 
parallelizable part, we get

▪ TP = (1-S) + 
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =  

1

1−𝑆+
𝑆

𝑃

49
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Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and 
our algorithm is only 2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =  

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

50
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Limitation: Hardware Threads

❖ These algorithms are limited by hardware. 

❖ Number of Hardware Threads: The number of threads can 
genuinely run in parallel on hardware 

❖ We may be able to create a huge number of threads, but 
only run a few (e.g. 4) in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

51
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