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Administrivia

❖PennOS was due Wed Nov 29
▪ You will schedule a time to meet with your TA to 

demonstrate your working code

▪ Can submit via gradescope now

▪ Reach out to TA’s to schedule PennOS Demo

❖ Check-in due after Midterm 1

2
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm
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Lecture Outline

❖ Systems Programming 

❖ C & C++

❖ Safety

❖ What’s Next?

4
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Poll: how are you?

❖ On a scale of 1 (hate) to 5 (love), how do you feel about C 
as a programming language?

6

pollev.com/tqm
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Poll: how are you?

❖ Why do you think we chose C as the programming 
language for this course?

7

pollev.com/tqm
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Poll: how are you?

❖ Why do you think we chose C as the programming 
language for this course?

❖ What comes to my mind:

▪ C is fast

▪ C exposes you to the low-level features that other languages 
abstract away. (Even if we did not use them all) 

• addresses

• Memory management

• System Calls

• Assembly 

▪ Operating System Kernels and Systems have been written in C for 
a long time. In some ways it would be blasphemous to choose 
something like python 8

pollev.com/tqm
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C/C++?

❖ Common way of listing the languages: C/C++

❖ Common understanding of the language

▪ C++ is C but more

▪ C++ is a super set of C

❖ This understanding
is a pet-peeve of mine

9

C++

C
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C vs C++ (Timeline)

❖ What People Think

10

C C++
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C vs C++ (Timeline)

❖ More Detail (but a lot left out)

11

C
1972

K&R C
1978

ANSI C
1989

C99
1999

C w/
Classes
1982

C++
1985

C++98
1998

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.
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C vs C++ (Timeline)

❖ More Detail (but a lot left out)

12

ANSI C
1989

C99
1999

C++98
1998

C++11
2011

C11
2011

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C++14
2014

C++17
2017

C++20
2020

C++23
2023

C23
2023

C has adopted changes from C++
example: auto and nullptr in C23
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C vs C++ Examples

❖ old_c.c

▪ C has evolved since it was introduced in 1972

❖ c23.c

▪ C still gets updates adding new features

▪ Admittedly, the updates are small relative to other language 
updates

❖ cpp23.cpp and stdin_echo.cpp

▪ Modern C++ is very different from C (Though most C is still legal!)

❖ cpp23_hello.cpp

▪ The fundamentals of the language are changing as well 13
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Learning a little bit of C++

❖ String & Vector

▪ You should be familiar with these, brief demo in learning.cpp

❖ References

▪ Next slide…

▪ And in ref.cpp

14
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Objects as Parameters

❖ What is printed in
this example?

A. Output "3"

B. Output "0"

15

pollev.com/tqm

#include <iostream>

#include <vector>

using namespace std;

void foo(vector<int> v) {

  v.push_back(2400);

  v.push_back(5950);

  v.push_back(3800);

}

int main(int argc, char** argv) {

  vector<int> v;

  foo(v);

  cout << v.size() << endl;

}
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Objects as Parameters

❖ What is printed in
this example?

A. Output "3"

B. Output "0"

16

pollev.com/tqm

#include <iostream>

#include <vector>

using namespace std;

void foo(vector<int> v) {

  v.push_back(2400);

  v.push_back(5950);

  v.push_back(3800);

}

int main(int argc, char** argv) {

  vector<int> v;

  foo(v);

  cout << v.size() << endl;

}
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

17

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x; 

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

Note: Arrow points 
to next instruction.

When we use '&' in a type 

declaration, it is a reference.

&var still is “address of var”
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

18

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 5

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

19

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 6

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

20

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 7

y 10

Note: Arrow points 
to next instruction.

// Normal assignment
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

21

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 10

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

22

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  // sets z (and x) to 11

  return EXIT_SUCCESS;

}

x, z 11

y 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

23

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points 
to next instruction.

Parameters are attached

To variables provided by caller
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

24

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points 
to next instruction.

(swap) tmp
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

25

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

26

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a

(swap) x
10

(main) b

(swap) y
10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

27

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a

(swap) x
10

(main) b

(swap) y
5

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

28

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points 
to next instruction.
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Lecture Outline

29
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What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ NSA: 1 year ago (Nov 10th, 2022)

30

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement



CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Memory Safety CVE

❖ CVE = Common Vulnerabilities and Exposures

31This is from Microsoft research showing how most vulnerabilities come from memory issues
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Memory Safety 

❖ Memory Safety is dominating discussion on Systems 
programming languages (C, C++, Rust, Zig, Nim, D, …)

❖ What is memory safety?

❖ Broadly two types:

▪ Temporal Safety: making sure you don’t access “objects” that are 
destroyed, or invalid “object” states

▪ Spatial Safety: making sure you do not access memory you either 
shouldn’t access or accessing them in the wrong ways

32
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Temporal Safety C Example

❖ Here is an example in C where is the issue?

33

int main(int argc, char** argv) {

  int* ptr = malloc(sizeof(int));

  assert(ptr != NULL);

  *ptr = 5;

  // do stuff with ptr

  free(ptr);

  printf("%d\n", *ptr);

}
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Temporal Safety

❖ Here is an example in C++ where is the issue?

34

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

  vector<int> v {3, 4, 5};

  int& first = v.front();

  cout << first << endl;

  

  v.push_back(6);

  cout << v.size() << endl;

  cout << first << endl;

}
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Temporal Safety

❖ Here is an example in C++ where is the issue?

35

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

  v1.push_back(v2.front());

}

int main() {

  vector<int> x{3, 4, 5};

  func(x, x);

}
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Temporal Safety

❖ Here is an example in C++ where is the issue?

36

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

  v1.push_back(v2.front());

}

int main() {

  vector<int> x{3, 4, 5};

  func(x, x);

}

push_back takes in an int&

push_back may need to resize, if it does, the reference to its front becomes invalid
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Spatial Safety

❖ C (and C++) enforce types on variables, they are statically 
typed 

❖ C and C++ can easily get around the type system though:

37

int main() {

  int x = 3;

  float f1 = x;  // converts bits to floating point rep

  float f2 = *(float*)&x; // copies bits

 

  printf("%f\n", f1); // these two print

  printf("%f\n", f2); // different things

}
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Spatial Safety

❖ C (and C++) enforce types on variables, they are statically 
typed 

❖ C and C++ can easily get around the type system though:

38

int main() {

  string s = "Howdy :)";

  vector<int> v = *retinterpret_cast<vector<int>*>(&s);

  v.push_back(3);

  // this code probably crashes before getting here

}
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Aside: unions

❖ A union is a type that can have more than one possible 
representations in the same memory position

39

union {

  float f;

  int i;

};

f = 3.14;  // assigns a float value to the union

printf("%d\n", i);  // try to interpret the same memory as an int

// this is not type checked 
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Spatial Safety

❖ A union is a type that can have more than one possible 
representations in the same memory position

40

// common design pattern, return a struct that either holds

// an error or the expected value, with a bool to indicate

struct parer_result {

  bool is_valid;

  union {

    char* error message;

    struct parsed_command* cmd;

  };

};

struct parser_result parse_cmd(const char* input);

int main() {

  struct parser_result = parse_cmd("…");

  struct parsed_command = *(parser_result.cmd)

}

// We didn’t check if the result was valid, may be violating 

spatial safety
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Spatial Safety

❖ Sometimes violating spatial safety is "needed"
▪ To support “Generics” in c, we often cast to/from void*

▪ Can be used for some cool stuff like this fast inverse square root 
algorithm (don’t do this, it is not fast anymore):

41
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Spatial Safety 

❖ Spatial safety includes index out of bounds.

❖ What is wrong here?

❖ Here?

42

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0;  // memory smash!
No IndexOutOfBounds

Hope for segfault

write(STDERR_FILENO, "Hello!\n", PAGE_SIZE);

char buf[6];

strcpy(buf, "Hello!\n");
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Has C++ Been Fixing These?

❖ C++ has been giving replacements for these features that 
are safer.

▪ Instead of union, C++ has optional, variant, any and others

▪ Instead of C arrays, there is the vector and array type

❖ Is this C++ safe?

❖ C++ Keeps adding new features that are better and safer 
but adding in unchecked-unsafe ways to use them. 
Usually, the argument is for performance

43

vector<int> v {2, 3, 5, 6, 11, 13};

v[1000] = 7;      // is this safe?

v.at(1000) = 0;   // above: no, this: yes
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C++ Backwards compatibly

❖ Even with Modern C++ adding new features to get better 
and safer, many people stick to bad habits that are kept in 
C++ for backwards compatibility

44
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Lecture Outline

❖ What’s Next?

45
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C++ Successor Languages

❖ Because of the issue with safety, 2022 has been called 
“the year of the C++ successor Languages”

❖ Just in 2022, three successor languages were announced:

▪ Val (now called Hylo)

▪ Carbon

▪ cppfront (sometimes called cpp2)

❖ There have been many languages before:

▪ D

▪ Go

▪ Rust

▪ Others: Nim, Zig, Swift, etc. 46
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C and C++ are used everywhere

❖ Many things are written largely/primarily in C++ or C

▪ The Adobe suite (Photoshop, etc)

▪ The Microsoft office suite (word, PowerPoint, etc.)

▪ The libre office suite (FOSS word, PowerPoint, etc)

▪ Chromium (Core of most web browsers, Edge, Opera, Chrome, 
etc)

▪ Firefox 

▪ Most Database implementations

▪ Tensorflow & Pytorch

▪ gcc, clang & llvm (which is the backbone for many compilers)

▪ Game Engines (Unreal, Unity, etc.)

47

Most of this information is from Jason Turner’s “C++ is 40… Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk
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C and C++ are used everywhere

❖ Regularly ranks in top used ~5-10 programming languages

❖ Many people still use C++

▪ Estimates from JetBrains 

▪ ~1,157,000 professional developers use C++ as their primary 
language

▪ ~2,492,000 professional developers regularly use C++

48
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Programming Language Adoption

49

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible 

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hl8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested

https://www.youtube.com/watch?v=8U3hl8XMm8c
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Migration

❖ Some organizations are (at least in part) trying to move 
from C / C++

❖ The Linux kernel has incorporated Rust into it

▪ It never allowed C++ into the kernel

❖ Microsoft and Mozilla Firefox are putting in a lot of effort 
to start training some employees to program in Rust.

❖ The situation is developing, we will see how things evolve 
over time ☺

50
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bleg

51
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Future Courses

❖ Systems Courses

▪ CIS 3410: Compilers

▪ CIS 5050: Software Systems

▪ CIS 5530: Networked Systems

▪ CIS 5550: Internet and Web Systems

▪ CIS 5500: Database and Information Systems

▪ CIS 5470: Software Analysis

❖ Otherwise related courses

▪ CIS 5600 Interactive Computer Graphics

▪ CIS 5610 Advanced Computer Graphics

▪ CIS 5650 GPU Programming and Architecture

▪ CIS 3310 Security

▪ CIS 5510 (Also security, may have remembered the # wrong)
52
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Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at 
UPenn and UW) who have influenced me to make the 
course what it is

❖ Huge thanks to the course TA’s for helping with the 
course!

53
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Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at 
UPenn and UW) who have influenced me to make the 
course what it is

❖ Huge thanks to the course TA’s for helping with the 
course!

54
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Thanks for a great semester!

❖ Thanks to you!

▪ It has been another tough semester. Still not completely out of 
the pandemic, Zoom fatigue, faltering motivation, etc

▪ My First offering of the course, things are still a bit rough

▪ You’ve made it through so far, be proud that you’ve made it and 
what you’ve accomplished!

❖ Please take care of yourselves, your friends, and your 
community

55
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Ask Me Anything

56
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