
CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Systems Programming
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris

Audrey Yang Jason hom Leon Hertzberg Shyam Mehta

August Fu Jeff Yang Maxi Liu Tina Kokoshvili

Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Administrivia

❖PennOS was due Wed Nov 29
▪ You will schedule a time to meet with your TA to

demonstrate your working code

▪ Can submit via gradescope now

▪ Reach out to TA’s to schedule PennOS Demo

❖ Check-in due after Midterm 1

2

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ Systems Programming

❖ C & C++

❖ Safety

❖ What’s Next?

4

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Poll: how are you?

❖ On a scale of 1 (hate) to 5 (love), how do you feel about C
as a programming language?

6

pollev.com/tqm

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think we chose C as the programming
language for this course?

7

pollev.com/tqm

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think we chose C as the programming
language for this course?

❖ What comes to my mind:

▪ C is fast

▪ C exposes you to the low-level features that other languages
abstract away. (Even if we did not use them all)

• addresses

• Memory management

• System Calls

• Assembly

▪ Operating System Kernels and Systems have been written in C for
a long time. In some ways it would be blasphemous to choose
something like python 8

pollev.com/tqm

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C/C++?

❖ Common way of listing the languages: C/C++

❖ Common understanding of the language

▪ C++ is C but more

▪ C++ is a super set of C

❖ This understanding
is a pet-peeve of mine

9

C++

C

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C vs C++ (Timeline)

❖ What People Think

10

C C++

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

11

C
1972

K&R C
1978

ANSI C
1989

C99
1999

C w/
Classes
1982

C++
1985

C++98
1998

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

12

ANSI C
1989

C99
1999

C++98
1998

C++11
2011

C11
2011

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C++14
2014

C++17
2017

C++20
2020

C++23
2023

C23
2023

C has adopted changes from C++
example: auto and nullptr in C23

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C vs C++ Examples

❖ old_c.c

▪ C has evolved since it was introduced in 1972

❖ c23.c

▪ C still gets updates adding new features

▪ Admittedly, the updates are small relative to other language
updates

❖ cpp23.cpp and stdin_echo.cpp

▪ Modern C++ is very different from C (Though most C is still legal!)

❖ cpp23_hello.cpp

▪ The fundamentals of the language are changing as well 13

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Learning a little bit of C++

❖ String & Vector

▪ You should be familiar with these, brief demo in learning.cpp

❖ References

▪ Next slide…

▪ And in ref.cpp

14

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Objects as Parameters

❖ What is printed in
this example?

A. Output "3"

B. Output "0"

15

pollev.com/tqm

#include <iostream>

#include <vector>

using namespace std;

void foo(vector<int> v) {

 v.push_back(2400);

 v.push_back(5950);

 v.push_back(3800);

}

int main(int argc, char** argv) {

 vector<int> v;

 foo(v);

 cout << v.size() << endl;

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Objects as Parameters

❖ What is printed in
this example?

A. Output "3"

B. Output "0"

16

pollev.com/tqm

#include <iostream>

#include <vector>

using namespace std;

void foo(vector<int> v) {

 v.push_back(2400);

 v.push_back(5950);

 v.push_back(3800);

}

int main(int argc, char** argv) {

 vector<int> v;

 foo(v);

 cout << v.size() << endl;

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

17

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x;

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

Note: Arrow points
to next instruction.

When we use '&' in a type

declaration, it is a reference.

&var still is “address of var”

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

18

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 5

y 10

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

19

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 6

y 10

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

20

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 7

y 10

Note: Arrow points
to next instruction.

// Normal assignment

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

21

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1;

 return EXIT_SUCCESS;

}

x, z 10

y 10

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

22

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;

}

x, z 11

y 10

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

23

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

Parameters are attached

To variables provided by caller

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

24

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

25

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a

(swap) x
5

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

26

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a

(swap) x
10

(main) b

(swap) y
10

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

27

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a

(swap) x
10

(main) b

(swap) y
5

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

28

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Lecture Outline

29

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ NSA: 1 year ago (Nov 10th, 2022)

30

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Memory Safety CVE

❖ CVE = Common Vulnerabilities and Exposures

31This is from Microsoft research showing how most vulnerabilities come from memory issues

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Memory Safety

❖ Memory Safety is dominating discussion on Systems
programming languages (C, C++, Rust, Zig, Nim, D, …)

❖ What is memory safety?

❖ Broadly two types:

▪ Temporal Safety: making sure you don’t access “objects” that are
destroyed, or invalid “object” states

▪ Spatial Safety: making sure you do not access memory you either
shouldn’t access or accessing them in the wrong ways

32

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Temporal Safety C Example

❖ Here is an example in C where is the issue?

33

int main(int argc, char** argv) {

 int* ptr = malloc(sizeof(int));

 assert(ptr != NULL);

 *ptr = 5;

 // do stuff with ptr

 free(ptr);

 printf("%d\n", *ptr);

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

34

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int& first = v.front();

 cout << first << endl;

 v.push_back(6);

 cout << v.size() << endl;

 cout << first << endl;

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

35

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

36

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

push_back takes in an int&

push_back may need to resize, if it does, the reference to its front becomes invalid

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

37

int main() {

 int x = 3;

 float f1 = x; // converts bits to floating point rep

 float f2 = *(float*)&x; // copies bits

 printf("%f\n", f1); // these two print

 printf("%f\n", f2); // different things

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

38

int main() {

 string s = "Howdy :)";

 vector<int> v = *retinterpret_cast<vector<int>*>(&s);

 v.push_back(3);

 // this code probably crashes before getting here

}

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Aside: unions

❖ A union is a type that can have more than one possible
representations in the same memory position

39

union {

 float f;

 int i;

};

f = 3.14; // assigns a float value to the union

printf("%d\n", i); // try to interpret the same memory as an int

// this is not type checked

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Spatial Safety

❖ A union is a type that can have more than one possible
representations in the same memory position

40

// common design pattern, return a struct that either holds

// an error or the expected value, with a bool to indicate

struct parer_result {

 bool is_valid;

 union {

 char* error message;

 struct parsed_command* cmd;

 };

};

struct parser_result parse_cmd(const char* input);

int main() {

 struct parser_result = parse_cmd("…");

 struct parsed_command = *(parser_result.cmd)

}

// We didn’t check if the result was valid, may be violating

spatial safety

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Spatial Safety

❖ Sometimes violating spatial safety is "needed"
▪ To support “Generics” in c, we often cast to/from void*

▪ Can be used for some cool stuff like this fast inverse square root
algorithm (don’t do this, it is not fast anymore):

41

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Spatial Safety

❖ Spatial safety includes index out of bounds.

❖ What is wrong here?

❖ Here?

42

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!
No IndexOutOfBounds

Hope for segfault

write(STDERR_FILENO, "Hello!\n", PAGE_SIZE);

char buf[6];

strcpy(buf, "Hello!\n");

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Has C++ Been Fixing These?

❖ C++ has been giving replacements for these features that
are safer.

▪ Instead of union, C++ has optional, variant, any and others

▪ Instead of C arrays, there is the vector and array type

❖ Is this C++ safe?

❖ C++ Keeps adding new features that are better and safer
but adding in unchecked-unsafe ways to use them.
Usually, the argument is for performance

43

vector<int> v {2, 3, 5, 6, 11, 13};

v[1000] = 7; // is this safe?

v.at(1000) = 0; // above: no, this: yes

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C++ Backwards compatibly

❖ Even with Modern C++ adding new features to get better
and safer, many people stick to bad habits that are kept in
C++ for backwards compatibility

44

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Lecture Outline

❖ What’s Next?

45

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C++ Successor Languages

❖ Because of the issue with safety, 2022 has been called
“the year of the C++ successor Languages”

❖ Just in 2022, three successor languages were announced:

▪ Val (now called Hylo)

▪ Carbon

▪ cppfront (sometimes called cpp2)

❖ There have been many languages before:

▪ D

▪ Go

▪ Rust

▪ Others: Nim, Zig, Swift, etc. 46

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C and C++ are used everywhere

❖ Many things are written largely/primarily in C++ or C

▪ The Adobe suite (Photoshop, etc)

▪ The Microsoft office suite (word, PowerPoint, etc.)

▪ The libre office suite (FOSS word, PowerPoint, etc)

▪ Chromium (Core of most web browsers, Edge, Opera, Chrome,
etc)

▪ Firefox

▪ Most Database implementations

▪ Tensorflow & Pytorch

▪ gcc, clang & llvm (which is the backbone for many compilers)

▪ Game Engines (Unreal, Unity, etc.)

47

Most of this information is from Jason Turner’s “C++ is 40… Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

C and C++ are used everywhere

❖ Regularly ranks in top used ~5-10 programming languages

❖ Many people still use C++

▪ Estimates from JetBrains

▪ ~1,157,000 professional developers use C++ as their primary
language

▪ ~2,492,000 professional developers regularly use C++

48

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Programming Language Adoption

49

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hl8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested

https://www.youtube.com/watch?v=8U3hl8XMm8c

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Migration

❖ Some organizations are (at least in part) trying to move
from C / C++

❖ The Linux kernel has incorporated Rust into it

▪ It never allowed C++ into the kernel

❖ Microsoft and Mozilla Firefox are putting in a lot of effort
to start training some employees to program in Rust.

❖ The situation is developing, we will see how things evolve
over time ☺

50

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

bleg

51

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Future Courses

❖ Systems Courses

▪ CIS 3410: Compilers

▪ CIS 5050: Software Systems

▪ CIS 5530: Networked Systems

▪ CIS 5550: Internet and Web Systems

▪ CIS 5500: Database and Information Systems

▪ CIS 5470: Software Analysis

❖ Otherwise related courses

▪ CIS 5600 Interactive Computer Graphics

▪ CIS 5610 Advanced Computer Graphics

▪ CIS 5650 GPU Programming and Architecture

▪ CIS 3310 Security

▪ CIS 5510 (Also security, may have remembered the # wrong)
52

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at
UPenn and UW) who have influenced me to make the
course what it is

❖ Huge thanks to the course TA’s for helping with the
course!

53

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at
UPenn and UW) who have influenced me to make the
course what it is

❖ Huge thanks to the course TA’s for helping with the
course!

54

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Thanks for a great semester!

❖ Thanks to you!

▪ It has been another tough semester. Still not completely out of
the pandemic, Zoom fatigue, faltering motivation, etc

▪ My First offering of the course, things are still a bit rough

▪ You’ve made it through so far, be proud that you’ve made it and
what you’ve accomplished!

❖ Please take care of yourselves, your friends, and your
community

55

CIS 3800, Fall 2023L25: Systems ProgrammingUniversity of Pennsylvania

Ask Me Anything

56

	Default Section
	Slide 1: Systems Programming Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: Poll: how are you?
	Slide 8: Poll: how are you?
	Slide 9: C/C++?
	Slide 10: C vs C++ (Timeline)
	Slide 11: C vs C++ (Timeline)
	Slide 12: C vs C++ (Timeline)
	Slide 13: C vs C++ Examples
	Slide 14: Learning a little bit of C++
	Slide 15: Objects as Parameters
	Slide 16: Objects as Parameters
	Slide 17: References
	Slide 18: References
	Slide 19: References
	Slide 20: References
	Slide 21: References
	Slide 22: References
	Slide 23: Pass-By-Reference
	Slide 24: Pass-By-Reference
	Slide 25: Pass-By-Reference
	Slide 26: Pass-By-Reference
	Slide 27: Pass-By-Reference
	Slide 28: Pass-By-Reference
	Slide 29: Lecture Outline
	Slide 30: What else is going on?
	Slide 31: Memory Safety CVE
	Slide 32: Memory Safety
	Slide 33: Temporal Safety C Example
	Slide 34: Temporal Safety
	Slide 35: Temporal Safety
	Slide 36: Temporal Safety
	Slide 37: Spatial Safety
	Slide 38: Spatial Safety
	Slide 39: Aside: unions
	Slide 40: Spatial Safety
	Slide 41: Spatial Safety
	Slide 42: Spatial Safety
	Slide 43: Has C++ Been Fixing These?
	Slide 44: C++ Backwards compatibly
	Slide 45: Lecture Outline
	Slide 46: C++ Successor Languages
	Slide 47: C and C++ are used everywhere
	Slide 48: C and C++ are used everywhere
	Slide 49: Programming Language Adoption
	Slide 50: Migration
	Slide 51: bleg
	Slide 52: Future Courses
	Slide 53: Thanks for a great semester!
	Slide 54: Thanks for a great semester!
	Slide 55: Thanks for a great semester!
	Slide 56: Ask Me Anything

