University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Exam Review
Computer Operating Systems, Fall 2023

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:
Andy Jiang Haoyun Qin Kevin Bernat Ryoma Harris
Audrey Yang Jason hom Leon Hertzberg Shyam Mehta
August Fu Jeff Yang Maxi Liu Tina Kokoshvili
Daniel Da Jerry Wang Ria Sharma Zhiyan Lu

Ernest Ng Jinghao Zhang Rohan Verma

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Administrivia

+» Reach out to TA’s to schedule PennOS Demo
ASAP

" Today and tomorrow are the last days to demo

" You should use the version of PennOS you
submitted unless you got prior approval to use one
with small bug fixes.

% Exam is Thus 7-9pm in Meyerson Bl

" Exam policies and review materials will be posted
after lecture.

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Administrivia

% Two things due before Reading Days, will be
released after the exam
® Check-in (Short survey), done anonymously and
pass/fail
" Team Evaluation for PennOS
« Pass/fail

- Done individually, you will describe how much and
what everyone contributed to pennos

« We will use this to handle cases where there was a
large imbalance in the work done.

- |f there are big inconsistencies between team
members. we will investiegate 3

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

@ Poll Everywhere pollev.com/tqm

+ Any questions, comments or concerns from last lecture?

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Midterm Philosophy / Advice (pt. 1)

+» | do not like midterms that ask you to memorize things
" You will still have to memorize some critical things.

= | will hint at some things, provide documentation or a summary of
some things. (for example: | will provide parts of the man pages
for various system calls)

+» | am more interested in questions that ask you to:

= Apply concepts to solve new problems
" Analyze situations to see how concepts from lecture apply

+» Will there be multiple choice?

" |f there is, you will still have to justify your choices

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Midterm Philosophy / Advice (pt. 2)

+ | am still trying to keep the exam fair to you, you must
remember some things

= High level concepts or fundamentals. | do not expect you to
remember every minute detail.

- E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

(I know this boundary is blurry, but hopefully this statement helps)

+ |'am NOT trying to “trick” you (like | sometimes do in poll
everywhere questions)

CIS 3800, Fall 2023

University of Pennsylvania L26: Exam Review

Midterm Philosophy / Advice (pt. 3)

» | am trying to make sure you have adequate time to stop
and think about the questions.
" You should still be wary of how much time you have

" But also, remember that sometimes you can stop and take a deep
breath.

» Remember that you can move on to another problem.

» Remember that you can still move on to the next part
even if you haven’t finished the current part

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Midterm Philosophy / Advice (pt. 4)

% On the midterm you will have to explain things

+ Your explanations should be more than just stating a topic
name.

» Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

+ State how the topic(s) relate to the exam problem and
answer the question being asked.

Disclaimer

+THIS REVIEW IS NOT
EXHAUSTIVE

»Topics not in this review
are still testable

+ Recitation after lecture is exam review

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Lecture Outline

+» Processes vs Threads

+» Memory Allocation

+» Caches

% Scheduling

+ File System Block Allocation
+ RAID

+» Threads & Data Races

+» Deadlock

10

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Processes vs Threads

» Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

«» Sometimes we want to call software that is written in

another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

11

CIS 3800, Fall 2023

University of Pennsylvania L26: Exam Review

Memory Allocation

Assume we have the following two pieces of code, which
ones is likely faster than the other and why?

r#include <stdio.h> V#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
int main(int argc, char** argv) { int main(int argc, char** argv) {
int* arr = malloc((int) * 10); int arr[10];
arr[0] = 1; arr[0] = 1;
arr[1l] = 1; arr|[1l] = 1;
(int 1 = 2; i < 10; i++4) { (int 1 = 2; 1 < 10; i++) {
arr[i] = arr[i-1] + arr[1l-2]; arr[i] = arr[i-1] + arr[l-2];
} }
printf ("%d\n", arr([9]):; printf ("%d\n", arr[9]):;

free (arr) ; free(arr);

} }

14

CIS 3800, Fall 2023

University of Pennsylvania L26: Exam Review

Memory Allocation

» Lets say that in addition to malloc, we also had a custom
slab allocator implemented that could allocate chunks of
space that is 64 bytes (16 integers) large.

+ What is one reason we may prefer the custom slab
allocator to malloc?

+» What is one reason we may prefer malloc?

16

University of Pennsylvania

Memory Allocation

L26: Exam Review

How is the array in this snippet of code likely allocated at

a low level (in assembly)?

r#include <stdio.h>
#include <stdlib.h>

int main(int argc,

int arr[l
arr[0]
arr[l] =
(1nt
arr[i]

}

printf ("%d\n", arr[9]);

1
1L g
i

CIS 3800, Fall 2023

char** argv)

i < 10;
+ arr[1-2];

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Caches

+» The most common way to store a sequence of elements in
C++ and most languages is a dynamically resizable array
(e.g. a vector).

A vector of <int> looks something like this in memory:

int main(int argc, char** argv) {
vector<int> v {3, 4, 5, 7, 8}; heap

}

stack

size t size = 3
slize t capacity = 3
int* data = 7

A

(IO |PS|W

A

16 bytes 20 bytes .

CIS 3800, Fall 2023

University of Pennsylvania L26: Exam Review

Caches

+» Typically, abool variable is 1 byte. How much space does
a bool strictly need though?

= 1 bit

» C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

" Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

20

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Caches

« |f we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

" You can assume a cache line is 64 bytes.

" |f we used a vector<bool> that allocates the bools normally (1
byte per bool)

" |f we use a vector<bool> that represents each bool with a
single bit

22

University of Pennsylvania L26: Exam Review

CIS 3800, Fall 2023

Scheduling

+ Four processes are executing on one CPU following round

robin scheduling:
0. 1. 2. 3. 4 5. 6. 7. 5. 9 100 11. 12, 13. 14

Lo I T = s I =

<« YOU can assume:

= All processes do not block for |/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f a process arrives at the same time as the running process’ time

slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

24

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Scheduling

0. 1. 2. 3 4 5 6 ;.8 %9 100 11 12 13 14

=

s

C
D

= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

" |f a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

+» What is the earliest time that process C could have
arrived?

+» Which processes are in the ready queue at time 97?

+ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 25

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

File System Block Allocation

» Consider that we want to read the 5th block of the file

/home/me/ .bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:
" You can assume a block is 4096 bytes

= assume that directory entries we are looking for are in the firs
block of each directory we search

» Linked List Allocation

= Assume we know the block number of the first block in root dir

. Linked List Allocation via FAT

= Assume we know where the root directory starts in the FAT.
" You can also assume a FAT entry is 2 bytes.

I-nodes

= assume we know where the | Node for the root directory is 29

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

File System Block Allocation

» How does the numbers change if we instead wanted to
write to the 5% block of the file?

» Despite not having the best numbers, | nodes are still
chosen over FAT. Why is this the case?

30

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

RAID

+ You are deciding between RAID 0, RAID 1, RAID 4 and
RAID 5 for a system you are working on.

= Assume we have 10 Disks available to us and a parity to data ratio
of 1:4.

+» Which RAID level allows for the most possible parallel
reads? Which one provides the least? Why?

+» What if we wanted to see which RAID level provides the
most parallel writes? Which one provides the least? Why?

31

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

RAID

+» Suppose that we took RAID 5 and had parity blocks per
stripe instead of 1. Each of the two parity blocks use a
different algorithm to calculate them in such a way that

makes the system tolerant to two disk failures instead of
1.

What are two downsides of this model compared to RAID
level 57

32

University of Pennsylvania

L26: Exam Review

Threads & Data Races

CIS 3800, Fall 2023

+ Consider the following pseudocode that uses threads.
Assume that file.txt is large file containing the contents of

a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

« There is a data race.
How do we fix it
using just a mutex?

rstring data = ""; // global
void* first thread(void* argqg)
f = open("file.txt",
while (!f.eof()) {
string data read =
data = data read;
}
}

void* second thread (void* arg)
while (true) {
if (data.size ()
print (data) ;
}

data = "";

}

0) A

)

{

O _RDONLY) ;

{

f.read (10 chars);

(where do we add calls to lock and unlock?)

33

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Threads & Data Races

+ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the

file stays the same). (string data = ""; // global

void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;
(!f.eof()) {
string data read = f.read (10 chars);
data = data read;

}
}

void* second thread (void* arg) {
(true) {
1f (data.size() != 0) {
print (data) ;
}

data = "";

}
}

\ J

University of Pennsylvania L26: Exam Review CIS 3800, Fall 2023

Threads & Data Races

+ Thereis an issue of inefficient CPU utilization going on in

this code. What is it and how can we fix it?
rString data = ""; // global

% (You can describe the | void* first thread(void* arg) {
f = open("file.txt", O RDONLY) ;

fix at a high level, no e (1) §
need to Write COde) string data read = f.read (10 chars);
data = data read;

}
}

void* second thread (void* arg) {
(true) {
if (data.size() != 0) {
print (data) ;
}
data = "";
}

}

\ J

University of Pennsylvania L26: Exam Review

CIS 3800, Fall 2023

Deadlock

+» Consider we are working with a data base that has N
numbered blocks. Multiple threads can access the data
base and before they perform an operation, the thread
first acquires the lock for the blocks it needs.

= Example: Threadl accesses B3, B5 and B1. Thread2 may want to
access B3, B9, B6. Here is some example pseudo code:

void transaction(list<int> block numbers) {
(every block num in block numbers)
acquire lock (block num)

}

operation (block numbers);

(every block num in block numbers)
release lock (block num);

}

University of Pennsylvania

Deadlock

L26: Exam Review CIS 3800, Fall 2023

" This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

= Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

" How can we fix this
(without locking
the whole database
if that even works)?

void transaction(list<int> block numbers)
(every block num in block numbers)
acquire lock (block num)

}

operation (block numbers);

(every block num in block numbers)
release lock (block num);

}

{

{

{

	Default Section
	Slide 1: Exam Review Computer Operating Systems, Fall 2023
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Midterm Philosophy / Advice (pt. 1)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Lecture Outline
	Slide 11: Processes vs Threads
	Slide 14: Memory Allocation
	Slide 16: Memory Allocation
	Slide 17: Memory Allocation
	Slide 19: Caches
	Slide 20: Caches
	Slide 22: Caches
	Slide 24: Scheduling
	Slide 25: Scheduling
	Slide 29: File System Block Allocation
	Slide 30: File System Block Allocation
	Slide 31: RAID
	Slide 32: RAID
	Slide 33: Threads & Data Races
	Slide 34: Threads & Data Races
	Slide 35: Threads & Data Races
	Slide 36: Deadlock
	Slide 37: Deadlock

