CIS 3800 C
Recitation

Tuesday, September 5th 2023

Contents

Introto C

Structs

Strings, Arrays & Pointers

Memory Allocation

Syntax and Style (case, Macros, error checking)
Valgrind

GDB

Helpful sites

© N A WD

Quick C History

- Ccame out of Bell Laboratories along with Unix around the same time (1972ish)

- Created by Dennis Ritchie and Ken Thompson who also created Unix

- Linux and MacOS are both based upon Unix

- Linux (used in this course) is written completely in C (but possibly soon Rust as well)
- Despite its old age and simplicity, C is still an extremely popular language

- https://github.com/torvalds/linux

Tux the Penguin!

https://github.com/torvalds/linux

Why C?

- Cisfast and very portable

- It does not include quality of life aspects other programming languages have

- No garbage collection, bounds checks and objects

- Cancreate powerful programs but also monstrous errors (memory safety)

- Since Unix/Linux are written in C, C’s use of system calls matches what the OS uses

- Soft bound paper to learn more about bound checking
https://acg.cis.upenn.edu/papers/pldi09 softbound.pdf ME: *Slaps my C script*

This bad boy can fit so many memory leaks in it

https://acg.cis.upenn.edu/papers/pldi09_softbound.pdf

Pointers

- Literally point to a place in memory

- Avariable which contain a memory location

- Declared with a type and an * ex (int *ptr;)

- *isused to dereference a pointer or operand

- Dereference is to “go to” the memory location in the pointer
- &isused to get the memory location of the passed operand

- &isused in conjunction with pointers ex (int *ptr = &integer)
- Candereference multiple times

- pointers.c

Arrays

- Contiguous memory of the same type

- Arrays are referenced by using a pointer to the first element

- Very easy to go past the bounds of an array and cause memory errors
- arrays.c

Strings

- No“String” typeinC

- Strings are just arrays of characters

- Allstrings in C must end in \O’, the null character

- Functions often continue reading until they find a null character
- Thisisreferred to as a null terminated string

- String literals are super funky

- Veryimportant for project O!

- strings.c

Structs

- Objects do not exist in C, but structs do!

- Custom data types which contain inner custom fields

- Structs are allocated as contiguous memory

- Very similar to arrays, but filled with possibly different data types
- structs.cand structs.h

Memory Management

- Stack
- Static storage / local scope
- Automatically allocated/deallocated
- Small upper bound in size (stack overflow)
- charstr[6] = “hello”;
- Heap
- Dynamic storage / program scope
Allocated with system calls and freed with free(3)
Large size
char* str = malloc(6 * sizeof(char));

Memory Management

- Proj 0 can be done solely on the stack, but proj1 and proj2 will be tough to
only allocate stack memory

- System calls to allocate memory
- malloc(3), calloc(3), etc.
- System call to free allocated memory
- free(3)
- What to allocate?
ANY pointers / arrays unless we tell you otherwise
Strings (char™)
- Make sure to FREE all memory before exit(2)!
- Example code memory.c

\ C coding style

See c_style.c, c_style.h

Valgrind

- Memory error checking program

- Very useful for finding memory leaks and memory errors

- Valgrind runs around the program running

- Common valgrind errors are memory leaks, invalid reads/writes, and uninitialised bytes
- Simply run “valgrind ./program <program arguments>"

- Useful valgrind arguments:

= -—-trace-children=<yes|no> [default: no]

- --track-origins=<yes|no> [default: no] -~
= --leak-check=<no|summary|yes|full> [default: summary]

GDB

- GDBis auseful debugger that allows you to inspect a program

- Compile ac program with flag -g allows you to use gdb on it
- Your provided makefiles will have this option already
- gdb[program name] to run gdb on the program

- List of gdb commands next slide
- Example debug code gdb.c

GDB Commands

- file [program] - mounts the program onto gdb

- run-runs the program

- backtrace/bt - show the stack of this program

- print [variable] - shows variable’s value at this instant of program
execution

- break/br [line] - set a breakpoint at line number

- continue/c - continues execution

- list - prints the source code around the current line.

- step - runs the next line of code, and stops again. If the current lineis a
function call, it steps into the function call.

- next-issimilar to step, but steps *over™ any function calls.

- watch [variable]- stops each time the variable var changes.

7. Helpful sites for C reference

System calls (Section 2)

e alarm

* execve”

Linux man pages: https://man7.org/linux/man-pages/

o exit

o fork*

e Either access online (link above) or in terminal: o
S $ man [section number] [func name] * yed"
n e .
o Pressqgtoexit * write’
o “Section number”: Library functions (Section 3)

m Man pages are broken into sections, including atol
commands (sec 1), system calls (sec 2), C library fe;
functions (sec 3) « malloc*

* perror
e strlen

o strtok

https://en.wikipedia.org/wiki/Man_page
https://man7.org/linux/man-pages/

Some C++ references contain sections on C

header
https://cplusplus.com/reference/ Ty | <cstring> (string.h)
<cctype> (ctype.h
<ce:::o> ((e:::o.h)) C Strings
<cfenv> (fenv.h)

[) CO nta i n S re a | |y n i Ce d Ocu m e ntatio n fo r C St ri n g <cfloat> (float.h) This header file defines several functions to manipulate C strings and arrays.

. <cinttypes> (inttypes.h) F .

. <cis0646> (is0646.h) unctions
fu n Ct Ions: <climits> (limits.h) Copying:
<clocale> (locale.h) -

https://cplusplus.com/reference/cstring/ Sy memepy Copy block of memory (uncion

<csetjmp> (setjmp.h) memmove Move block of memory (function)

<csignal> (signal.h) strepy Copy string (function)
<cstdarg> (stdarg.h)
<cstdbool> (stdbool.h)
<cstddef> (stddef.h)

https://en.cppreference.com/w/c <ostdint> (stdint. 1) Concatenatior:

<cstdio> (stdio.h) strecat Concatenate strings (function)

strncpy. Copy characters from string (function)

<cstdlib> (stdlib.h) strncat Append characters from string (function)
. <cstring> (string.h)
e Clanguage basics <ctgmat>(tgmath.) Comparison
<ctime> (time.h)
<cuchar> (uchar.h)
<cwchar> (wchar.h) stremp Compare two strings (function)

memcmp Compare two blocks of memory (function)

<cwetype> (wetype.h) streoll Compare two strings using locale (function)

‘) strncmp Compare characters of two strings (function)
» Input/Output:
» Multi-threading: strxfrm Transform string using locale (function)

» Other:

https://cplusplus.com/reference/
https://cplusplus.com/reference/cstring/
https://en.cppreference.com/w/c

