
CIS 3800 C
Recitation

Tuesday, September 5th 2023

Contents

1. Intro to C

2. Structs

3. Strings, Arrays & Pointers

4. Memory Allocation

5. Syntax and Style (case, Macros, error checking)

6. Valgrind

7. GDB

8. Helpful sites

Quick C History

- C came out of Bell Laboratories along with Unix around the same time (1972ish)

- Created by Dennis Ritchie and Ken Thompson who also created Unix

- Linux and MacOS are both based upon Unix

- Linux (used in this course) is written completely in C (but possibly soon Rust as well)

- Despite its old age and simplicity, C is still an extremely popular language

- https://github.com/torvalds/linux

Tux the Penguin!

https://github.com/torvalds/linux

Why C?

- C is fast and very portable

- It does not include quality of life aspects other programming languages have

- No garbage collection, bounds checks and objects

- Can create powerful programs but also monstrous errors (memory safety)

- Since Unix/Linux are written in C, C’s use of system calls matches what the OS uses

- Soft bound paper to learn more about bound checking

https://acg.cis.upenn.edu/papers/pldi09_softbound.pdf

https://acg.cis.upenn.edu/papers/pldi09_softbound.pdf

Pointers

- Literally point to a place in memory

- A variable which contain a memory location

- Declared with a type and an * ex (int *ptr;)

- * is used to dereference a pointer or operand

- Dereference is to “go to” the memory location in the pointer

- & is used to get the memory location of the passed operand

- & is used in conjunction with pointers ex (int *ptr = &integer)

- Can dereference multiple times

- pointers.c

Arrays

- Contiguous memory of the same type

- Arrays are referenced by using a pointer to the first element

- Very easy to go past the bounds of an array and cause memory errors

- arrays.c

Strings

- No “String” type in C

- Strings are just arrays of characters

- All strings in C must end in ‘\0’, the null character

- Functions often continue reading until they find a null character

- This is referred to as a null terminated string

- String literals are super funky

- Very important for project 0!

- strings.c

Structs

- Objects do not exist in C, but structs do!

- Custom data types which contain inner custom fields

- Structs are allocated as contiguous memory

- Very similar to arrays, but filled with possibly different data types

- structs.c and structs.h

Memory Management

- Stack
- Static storage / local scope

- Automatically allocated/deallocated

- Small upper bound in size (stack overflow)

- char str[6] = “hello”;

- Heap
- Dynamic storage / program scope

- Allocated with system calls and freed with free(3)

- Large size

- char* str = malloc(6 * sizeof(char));

Memory Management

- Proj 0 can be done solely on the stack, but proj1 and proj2 will be tough to

only allocate stack memory

- System calls to allocate memory
- malloc(3), calloc(3), etc.

- System call to free allocated memory
- free(3)

- What to allocate?
- ANY pointers / arrays unless we tell you otherwise

- Strings (char*)

- Make sure to FREE all memory before exit(2)!

- Example code memory.c

C coding style

See c_style.c, c_style.h

Valgrind

- Memory error checking program

- Very useful for finding memory leaks and memory errors

- Valgrind runs around the program running

- Common valgrind errors are memory leaks, invalid reads/writes, and uninitialised bytes

- Simply run `valgrind ./program <program arguments>`

- Useful valgrind arguments:
- --trace-children=<yes|no> [default: no]
- --track-origins=<yes|no> [default: no]
- --leak-check=<no|summary|yes|full> [default: summary]

GDB

- GDB is a useful debugger that allows you to inspect a program

- Compile a c program with flag -g allows you to use gdb on it
- Your provided makefiles will have this option already

- gdb [program name] to run gdb on the program

- List of gdb commands next slide

- Example debug code gdb.c

GDB Commands

- file [program] - mounts the program onto gdb

- run - runs the program

- backtrace/bt - show the stack of this program

- print [variable] - shows variable’s value at this instant of program

execution

- break/br [line] - set a breakpoint at line number

- continue/c - continues execution

- list - prints the source code around the current line.

- step - runs the next line of code, and stops again. If the current line is a

function call, it steps into the function call.

- next - is similar to step, but steps *over` any function calls.

- watch [variable]- stops each time the variable var changes.

7. Helpful sites for C reference

Linux man pages: https://man7.org/linux/man-pages/

● Either access online (link above) or in terminal:
○ $ man [section number] [func name]

■ i.e.: man 2 alarm, man 3 malloc

○ Press q to exit

○ “Section number”:

■ Man pages are broken into sections, including

commands (sec 1), system calls (sec 2), C library

functions (sec 3)

https://en.wikipedia.org/wiki/Man_page
https://man7.org/linux/man-pages/

Some C++ references contain sections on C

https://cplusplus.com/reference/

● Contains really nice documentation for C string

functions:

https://cplusplus.com/reference/cstring/

● Be careful not to stray out of the C library

https://en.cppreference.com/w/c

● C language basics

https://cplusplus.com/reference/
https://cplusplus.com/reference/cstring/
https://en.cppreference.com/w/c

