
Debugging w/
GDB

feat. horrendous C code

Using GDB

● -g flag in Makefile for compiling

a) gdb penn-shredder
b) gdb --args penn-shredder 3
c) gdb

○ (gdb) file penn-shredder
○ (gdb) set args 3
○ (gdb) run < in.txt
○ (gdb) help [command]

Walking through code

Command Shortcut Description

start ● Start from beginning and stop there

run r ● Start and run program from beginning

continue c ● Run until next breakpoint / until program exits

step s ● Run until next line*
○ Steps into a function

next n ● Run until next line in the current function is reached / returns*
○ Steps over a function

finish fin ● Run until the current function finishes*

*or until next breakpoint

Walking through code: example

int main(int argc, char* argv[]) {
 int n = 3;
 int fib = fibonacci(n);
 fprintf(stderr, "Fibonacci: %d\n", fib);

 return 0;
}

int fibonacci(int n) {
 int t1 = 0;
 int t2 = 1;
 int next = 0;

 if (n == 1) {
 return t1;
 } else if (n == 2) {
 return t2;
 }

 for (int i = 3; i <= n; i++) {
 next = t1 + t2;
 t1 = t2;
 t2 = next;
 }

 return next;
}

= next

= step

breakpoint= continue

Where am I in the code?

Command Description

layout src ● Changes the window layout to show source code

refresh / ref ● Refreshes the window incase it looks weird

Ctrl-x + a ● Close this window layout view

list / l ● Show some lines of source code before/around current

backtrace / bt / where ● Displays the call stack

frame [number] ● Selects and inspects a specific stack frame

Demo 0

Breakpoints (b/break)

Command Description

b [filename:]function
b [filename:]linenum

● Sets a breakpoint at the beginning of a function or at a
specific line number

info breakpoints
info b

● Lists all breakpoints w/ status and conditions

disable [bnum]
enable [bnum]

● Disable or enable a specific breakpoint

delete [bnum]
d [bnum]

● Deletes a specific breakpoint
● Deletes all if breakpoint num isn’t specified

clear [filename:]function
clear [filename:]linenum

● Removes breakpoints in a specific function or at a specific
line number

Printing things (p/print)

Command Description

p var ● Prints the value of a variable

p/x var ● Prints the value, in hex

p var.field ● Prints a field of a struct

p var->field
p (*var).field

● Prints a field of a struct pointer

p head->next->next->data ● Example of printing data in a linked list

p *arr[@len] ● Prints the elements of an array, up to the specified length

p var = value ● Sets a different value to a variable

Inspection

Command Description

info args ● Displays argos of the current function

info locals ● Displays local variables in the current function

info variables [regex] ● Lists all global and static variables + their data types
● Can filter using regex

info functions [regex] ● Displays all functions in the program
● Can filter using regex

ptype [expression] ● Shows the data type of the given expression
● Can display the definition of a type (useful for structs)

watch [expression] ● Stops program whenever value of expression changes
● Ex: watch foobar if foobar > 3

Demo 1 + 2

PennShell-specific debugging

Command Description

signal [signal] ● Sends a signal (e.g. SIGINT)
● Useful to test Ctrl + C, Ctrl + Z, etc

shell [cmd] ● Executes a command as if you were in bash

shell ps j ● Lists process(es) info w/ job format output

shell kill -9 <pid> ● Sends a SIGKILL to a specific process (non-ignorable)

kill ● Kill the program being debugged

set follow-fork-mode
[parent|child]

● After a fork, follow the child or parent process
● (parent by default)

shell ls -l /proc/<pid>/fd ● List a process’ open fd’s

Demo 3 + 4

Other Cool GDB Things

Command Description

disassemble / disas ● View assembly instructions of the current function

b [filename:]linenum
condition

● Make a breakpoint with an associated condition
● e.g. b 73 i > 4 && i % 2 == 0

call ● Calls a function immediately
● Helpful for on-the-fly behavior probing

until, advance, jump,
etc.

● Even more ways to step through your code

python ● Yes you can do python scripting in GDB

quit / q / Ctrl-D ● Fixes your bugs instantly
● Can touch grass

General Tips (for milestone and beyond)

● Use a debugger
○ gdb for C/C++ (and pdb for Python!)
○ VS Code extensions also available (with a GUI)
○ Take a break, go on a walk, etc.

● Use Valgrind to detect memory leaks / other memory issues
● Clean coding style

○ Use helper functions / helper files
○ Try to avoid nesting too many for/while/if/else’s
○ Add comments for complicated bits

● Test incrementally
● Double check the man page / docs

Wrap Up

● We’ll post recording/slides on the website soon
● Quick reminder: Penn Shell due tomorrow (Wednesday)
● Open OH for the remaining time
● Any questions?

