@b
TAKING CONTROL

Recitation 5

Process Groups &
Terminal Control

Table of Contents

Processes and Process Groups

Terminal Control (Foreground and Background Processes)
Signal Behaviors (Zombies and Orphans)

How this ties to P1 (feat. waitpid)

H WN o

Pipelines

Consider the following pipelined process:

sleep 1 | sleep 20 | sleep 100

pid, args
COMMAND
bash

Q: How long does this process take? sleep 1

sleep 20
sleep 100
ps -o pid,args

A: 100 seconds

Q: Why?
But how does the shell keep in track of

i these multi-process, single jobs?
A: Parallel Execution

https://cs162.org/static/readings/ic221_s16_lec17.html

Pipelines and Process Groups

root@s7fb@c278533:~/c1s3800# sleep 10 | sleep 10 | sleep 10&
[1] 31879
root@77b@c278533:~/c1s3800# ps)
PPID PID| PGID SID TTY TPGID STAT UID COMMAND
) 1 1 1 pts/0 1 Ss+ 2 bash
273 293 293 293 pts/1 31938 Ss :00 /bin/bash

273 31513 31513 31513 pts/2 31513 Ss+ - /bin/bash

293 31877 31877 293 pts/1 31938 S . sleep 10

293 131878 31877 293 pts/1 31938 S - sleep 10

293 31879 31877 293 pts/1 31938 S - sleep 10

293 31938 31938 293 pts/1 31938 R+ - ps)
root@77tb@c278533:~/c1s3800#

Process Groups

root@s57fb@c278533:
[1] 31879
root@577b@c278533:
PPID PID PGID
() 1 1
273 293 293
273 31513 31513
293 31877 31877
293 31878 31877
293 31879 31877
293 31938 31938
root@57fb@c278533:

~/cis3800# sleep 10 | sleep 10 | sleep

~/cis3800# ps j

SID TTY
1 pts/@
293 pts/1
31513 pts/2
293 pts/1
293 pts/1
293 pts/1
293 pts/1
~/c1s3800#

TPGID

1
31938
31513
31938
31938
31938
31938

STAT
Ss+
Ss
Ss+

UID

10&

COMMAND
bash
/bin/bash
/bin/bash
sleep 10
sleep 10
sleep 10

pPs)

pgid 293

/bin/bash (293)

pgid 31877

sleep 10 (31877)
sleep 10 (31878)
sleep 10 (31879)

Process Groups

root@s57fb@c278533:
[1] 31879
root@577b@c278533:
PPID PID PGID
() 1 1
273 293 293
273 31513 31513
293 31877 31877
293 31878 31877
293 31879 31877
293 31938 31938
root@57fb@c278533:

~/cis3800# sleep 10 | sleep 10 | sleep

~/cis3800# ps j

SID TTY
1 pts/@
293 pts/1
31513 pts/2
293 pts/1
293 pts/1
293 pts/1
293 pts/1
~/c1s3800#

TPGID

1
31938
31513
31938
31938
31938
31938

STAT
Ss+
Ss
Ss+

UID

10&

COMMAND
bash
/bin/bash
/bin/bash
sleep 10
sleep 10
sleep 10

pPs)

pgid 293

/bin/bash (293)

pgid 31877

sleep 10 (31877)
sleep 10 (31878)
sleep 10 (31879)

man getpid setpgid
GETPID(2) Linux Programmer's Manual

NAME
getpid, getppid - get process identification

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

SETPGID(2) Linux Programmer's Manual

NAME
setpgid, getpgid, setpgrp, getpgrp - set/get process group

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);
pid_t getpgid(pid_t pid);

pid_t getpgrp(void); /* POSIX.1 version */
pid_t getpgrp(pid_t pid); /% BSD version /

int setpgrp(void); /* System V version x/
int setpgrp(pid_t pid, pid_t pgid); /% BSD version x/

GETPID(2)

SETPGID(2)

Terminal Control

- Only one process group has the “baton” which is terminal control
- Terminal controlling function gets signals along with ability to read terminal

Giving and Receiving Terminal Control

- Use tcsetpgrp to give terminal control
- Is there any issues with doing this? (hint: signals)
- Can get the pgid who has terminal control with tcgetpgrp

pid t tcgetpgrp(int f7d);
int tcsetpgrp(int fd, pid_t pgrp);

Signals in Process Groups

- Signals are relayed to all processes in a process group
- Terminal signals (SIGINT, SIGTSTP, etc) will be relayed to all processes in then
process group in the foreground

- kill(2) can send signals to certain process groups
may also use killpg(2)

Zombies and Orphans

- Zombie Process: is a process that have finished execution but still has entry in
the process table of the parent.

- Orphan Process: is a process whose parent process finished execution and
does not exist anymore

& Prpha

Process State Lifetime

stopped

SIGCONT
received SIGSTOP

Process creation (ctrl + 2)

e.g. fork () Selected by the

kernel to run

Process
finished

After running for a bit
it is another processes “turn”

Terminated

Zombies In Background

Zombies In Background

Orphans

int main() {
for (1 = 1 to 3) {
fork () ;
if (child) {
execute (sleep 100);

}

exit (0);

Orphans

7?7

int main() {
for (1 = 1 to 3) {
fork () ;
if (child) {
execute (sleep 100);

}

exit (0);

Orphans

int main() {
for (1 = 1 to 3) {
fork () ;
if (child) {
execute (sleep 100);

}

exit (0);

Orphans

int main() {
for (1 = 1 to 3) {
fork () ;
if (child) {
execute (sleep 100);

}

exit (0);

Very Relevant in PennOS!

Orphans

int main() {
for (1 = 1 to 3) {
fork () ;
if (child) {
execute (sleep 100);

}

exit (0);

Wait Refresher

if (@bit(&status) == =1)
{

perror("! ’ Lld es ermination”);
ex1t(EXIT FAl E);

}
} while (!WIFEXITED(status) && !WIFSIGNALED(status));

What does this code segment do?

Waitpid
I pid_t waitpid(pid_t pid, int *status, int options);

- What are the different values of PID and options?
- What is the return value of waitpid()

Waitpid I pid _t waitpid(pid _t pid, int *status, int options);

Options:

- WNOHANG: do not wait for process to finish, but “collect” already finished or
changed state process

- WUNTRACED: also return if the child stopped

- -1: wait for all children

- -(pgid): wait only for children from a specific process group
- Pid: wait only for a child with a specific pid

How it ties to Project 1

- How does waitpid and its options come up?

- When should terminal control change?

- Are there zombies which happen in project 1?7
- How do process groups come up?

How it ties to Project 1

- Depending on the job being either foreground or background, will have to use
different waitpid arguments

- Terminal control will have to go to the foreground process

- When background jobs first finish, before they are waited on they temporarily
zombies

- Jobs will be separated into process groups

Wrap Up

e We'll post recording/slides on the website soon

e Quick reminder: Penn Shell due in a week from tomorrow
o Read man pages! They really help

e Any questions?

