
Recitation 5
Process Groups &
Terminal Control

Table of Contents

1. Processes and Process Groups
2. Terminal Control (Foreground and Background Processes)
3. Signal Behaviors (Zombies and Orphans)
4. How this ties to P1 (feat. waitpid)

Pipelines

Consider the following pipelined process:

sleep 1 | sleep 20 | sleep 100

Q: How long does this process take?

A: 100 seconds

Q: Why?

A: Parallel Execution

ps -o pid,args
 PID COMMAND
 1234 bash
 4100 sleep 1
 4101 sleep 20
 4102 sleep 100
 5300 ps -o pid,args
#

But how does the shell keep in track of
these multi-process, single jobs?

https://cs162.org/static/readings/ic221_s16_lec17.html

Pipelines and Process Groups

Process Groups
pgid 293

/bin/bash (293)

pgid 31877

sleep 10 (31877)
sleep 10 (31878)
sleep 10 (31879)

Process Groups
pgid 293

/bin/bash (293)

pgid 31877

sleep 10 (31877)
sleep 10 (31878)
sleep 10 (31879)

man getpid setpgid

Terminal Control

- Only one process group has the “baton” which is terminal control
- Terminal controlling function gets signals along with ability to read terminal

Giving and Receiving Terminal Control

- Use tcsetpgrp to give terminal control
- Is there any issues with doing this? (hint: signals)
- Can get the pgid who has terminal control with tcgetpgrp

Signals in Process Groups

- Signals are relayed to all processes in a process group
- Terminal signals (SIGINT, SIGTSTP, etc) will be relayed to all processes in then

process group in the foreground
- kill(2) can send signals to certain process groups

- may also use killpg(2)

Zombies and Orphans

- Zombie Process: is a process that have finished execution but still has entry in
the process table of the parent.

- Orphan Process: is a process whose parent process finished execution and
does not exist anymore

Zombies In Background

Ready Running Background
Terminated

In
Background

bg

Zombies In Background

Ready Running Background
Terminated

In
Background

bg

Parent “polls” (checks) if
child is done

Orphans

int main() {
for (i = 1 to 3) {

fork();
if (child) {

execute(sleep 100);
}

}
exit(0);

}

P

C1 C3C2

Orphans

int main() {
for (i = 1 to 3) {

fork();
if (child) {

execute(sleep 100);
}

}
exit(0);

}

C1 C3C2

???

Orphans

int main() {
for (i = 1 to 3) {

fork();
if (child) {

execute(sleep 100);
}

}
exit(0);

}

P

C1 C3C2

PP

Orphans

int main() {
for (i = 1 to 3) {

fork();
if (child) {

execute(sleep 100);
}

}
exit(0);

}
C1 C3C2

PP

Very Relevant in PennOS!

Orphans

int main() {
for (i = 1 to 3) {

fork();
if (child) {

execute(sleep 100);
}

}
exit(0);

}
C1 C3C2

bash (1)

…

Wait Refresher

What does this code segment do?

Waitpid

- What are the different values of PID and options?
- What is the return value of waitpid()

Waitpid

Options:

- WNOHANG: do not wait for process to finish, but “collect” already finished or
changed state process

- WUNTRACED: also return if the child stopped

Pid

- -1: wait for all children
- -(pgid): wait only for children from a specific process group
- Pid: wait only for a child with a specific pid

How it ties to Project 1

- How does waitpid and its options come up?
- When should terminal control change?
- Are there zombies which happen in project 1?
- How do process groups come up?

How it ties to Project 1

- Depending on the job being either foreground or background, will have to use
different waitpid arguments

- Terminal control will have to go to the foreground process
- When background jobs first finish, before they are waited on they temporarily

zombies
- Jobs will be separated into process groups

Wrap Up

● We’ll post recording/slides on the website soon
● Quick reminder: Penn Shell due in a week from tomorrow

○ Read man pages! They really help

● Any questions?

