
Recitation 6
Midterm Review!

Table of Contents

1. Process Groups and Signaling
2. Memory Management
3. Caches
4. Threads
5. Sample Problems

Some of these concepts are pretty straight forward…

BUT do you REALLY know them?

fork(2)

Parent

Heap

Stack

Child

Heap

Stack

fork()

int main() {
 int i = 3;
 fork();
 i++;
 print(i);
}

int main() {
 for (i is [1,3]) {
 pid = fork();

if (pid == 0)
print(“hi\n”);
 }
}

What is printed?
4
4

How many children? 7

So how do we control behavior of children?

exec(3)

- Loads in a new program for execution
- Resets PC, SP, registers, memory for the new

program to run
- Process EXITS after successful exec(3)

int main() {
 for (i is [1,10]) {
 pid = fork();
 if (pid == 0)

 execvp(“echo”, [“echo”, “hi”, NULL]);
 }
}

Parent

Heap

Stack

Child

Heap

Stack

fork()

exec(echo);

echo

echo Heap

echo Stack

How many ‘hi’? 10

Inter-Process Signaling

P1

Signal
Relaying

Custom
Handlers

P0

Delivers
signal to

P1

Relays
signal to

P1

When was this used in our
projects?

alarm!

Inter-Process Signaling

P1

Signal
Relaying

Custom
Handlers

P0

Delivers
signal to

P1

Take default
action on process

Default
Handlers

P0 had Custom Handlers, P0 forks P1.
What is the behavior of signals in P1?
Custom Signal Handler Behavior!

What if P1 had exec()?
Default Behavior!

Inter-Process Signaling

P1

Signal
Relaying

Custom
Handlers

Relays
signal to

P1

Take default
action on process

Default
Handlers

Hardware
interrupt (ID)

What does the process need to
receive these signals?

Terminal Control!

Other Process Related Topics…

1. Redirection
2. Pipes
3. Terminal Control

Virtual Memory

- The x86-64 architecture (as of 2016) allows 48 bits for virtual memory and,
for any given processor, up to 52 bits for physical memory. These limits
allow memory sizes of 256 TiB (256 × 10244 bytes) and 4 PiB (4 × 10245
bytes), respectively.

- Each program “thinks” it has that much memory
- But in real life, memory is bounded physically by RAM and SSD

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

Swap
MOV R, M

Memory Management Unit

Memory Translation

What is the page size?
4KB / 4096 bytes

How many bits represent page offset?
12 bits

How many bits represent each page?
4 bits

How many pages?
16 pages

How many addresses per page?
4096

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

Swap
MOV R, M

Caches

I/O Bus

CPU

MMU

Virtual Address

Physical Address

Physical Memory
Frames (RAM)

Disk Controller

SwapMOV R, M

Caches

TLB Page Table

Registers

SRAM

L1 Cache (I, D)

L2 Cache (I, D)

L3 Cache (I, D)

DRAM

Least Recently Used (LRU)

- Memory is limited
- Which line of memory to evict/replace when we run out of memory?

- LRU

- Advantages of LRU
- Generally good performance, we are evicting a page that is “least” frequently used
- Reduces number of page faults

- Disadvantages of LRU
- Quite costly to find the LRU page

- Think of a scenario where LRU may actually hurt performance
- Sequential Access: If some sequential access pattern forces LRU to evict and re-allocate parts

of memory, we will have poor performance

Threads!

- Processes vs Threads?
- Processes are more “heavy weight” than threads

- Unique memory address space,
- THREADS SHARE MEMORY!

- Unique stack, PC, and registers, all in one address space
- Processes are Isolated
- BOTH can run concurrently but,
- Context Switching is more expensive in Processes

…

- Scheduling is NOT COVERED in the midterm!

Some Thinking Questions 1
Consider this graph of CPU Utilization vs # of Processes Running

What is happening at each point?

C
PU

 U
til

iz
at

io
n

(%
)

100%

of Processes1 2 3

A
B

C

A: Context Switching becomes a
problem
B: SUM(memory utilization) >
RAM, so we start using more
SWAP file
C: Thrashing: Most of the
memory access causes a page
fault, and we use SWAP a lot

Some Thinking Questions 2

Consider the following system:

32 bit address space
2GiB physical memory size
byte addressable
32KiB page size

Total virtual address space in bytes? 2^32 bytes Number of bits per virtual address? 32 bits

Number of page offset bits? 15 bits

How many page table entries per page table? 2^17 page table entries

How many frames in physical memory? 2GiB/32KiB = 2^16 frames

What if the architecture was 2 byte addressable?

2^33 bytes, 32bits, 14bits, 2^18 page table entries, 2^16 frames, but ½ # of addresses in physical memory

Some Thinking Questions 3

For the following state whether it would be better to use multiple threads or processes:

1. You want to process a big image by calculating the average of all pixels Threads
2. You want to compile a huge C++ library with over 2000 source files Threads
3. You have a system of receiving and logging lots of transactions, each action needs

data integrity Process
4. You have a word processor that constantly checks for spelling mistakes, grammar

issues, and syntax errors. Threads

More Practice Problems

https://www.seas.upenn.edu/~cis3800/23fa/exams/midterm0

https://www.seas.upenn.edu/~cis3800/23fa/exams/midterm0

