
Recitation 7 - Makefile + PennOS

Agenda 1) PennOS Intro

2) Makefile

Projects So Far…

Penn Shredder

- Mini program that executes one command
- fork(2), alarm(2), signal(7)
- C programming, processes, and signal

handling

Penn Shell

- bash-like shell
- I/O through redirections and pipes
- Job Control (fg/bg)
- Process groups, redirections

You called system calls/user-level functions to control
behaviors of processes and simulate a shell.

Now it is your turn to implement these user-level functions and
its lower level functionalities

Penn OS

Kernel / Scheduler

- Priority scheduling (nice)
- Process States (Running, Blocked, Zombie, etc..)
- Process Control Blocks
- Job Control
- User Contexts (ucontext)

File System

- Single File of fixed size
- Your own interface for interacting with files

and file descriptors
- Simulate UNIX’s file system

- File allocation system
- Directory
- Redirections

- Support for UNIX commands
- ls, cat, touch, rm

Penn OS Shell

Penn OS

Kernel / Scheduler

- Priority scheduling (nice)
- Process States (Running, Blocked, Zombie, etc..)
- Process Control Blocks
- Job Control
- User Contexts (ucontext)

File System

- Single File of fixed size
- Your own interface for interacting with files

and file descriptors
- Simulate UNIX’s file system

- File allocation system
- Directory
- Redirections

- Support for UNIX commands
- ls, cat, touch, rm

PennOS as a Guest OS

Main Deliverables

● Standalone PennFAT (the file system) - 2 people
○ Commands for creating and removing the binary file acting as the file system
○ Mini shell that takes in other file system-related commands

● Kernel / Scheduler - 2 people
○ Priority Scheduling
○ Process Control Blocks and Process States
○ Logging

● Integration of File System, Scheduler into One Shell - Everyone
○ Parsing
○ Terminal Control
○ Terminal Signaling
○ Synchronous Child Waiting
○ Redirections (Pipeline for extra credit)
○ Error Handling with own p_perror API
○ SEPARATION OF USER-LEVEL and KERNEL-LEVEL API

Intro to Makefiles

This project will be submitted on gradescope via git. To submit,
place all relevant code and documents in your groups git-repo
on the master branch. You must organize your code into
directories from the top-level as follows:

● ./bin - all compiled binaries should be placed here
● ./src - all source code should be placed here
● ./doc - all documentation should be place here
● ./log - all PennOS logs should be placed here

Your code should compile from the top level directory by issuing
the make command. Then, you should go to the gradescope
submission and submit your github repo name link. Finally:
make sure that you add all of your project partners to the
same submission

~cis3800/23fa/projects/pennos/pennos

What is a Makefile?
● Used to control what gets recompiled
● Only recompiles what needs to be recompiled
● Automate tasks, primarily for building

programs
● Describes relationships between files and

how to derive target files from source files

Why use Makefiles?
● Avoid redundancy in compilation
● Track dependencies
● Make large projects more manageable

https://www.seas.upenn.edu/~cis3800/23fa/projects/pennos/pennos

● pennfat.c and pennos.c will both contain a main() function
○ Compiler will scream if it sees both during linking

Approach 1: use wildcards and filter-out*
Approach 2: manually list files

Makefile for PennOS

all: bin/pennos bin/pennfat

make pennos binary
bin/pennos: .h and .o, except pennfat.o

$(CC) ...
make pennfat binary
bin/pennfat: .h and .o, except pennos.o

$(CC) ...

├── Makefile
├── bin/
│ ├── pennfat
│ └── pennos
├── doc/
├── log/
├── obj/ (optional)
│ ├── common.o
│ ├── parser.o
│ ├── pennfat.o
│ └── pennos.o
└── src/
 ├── common.c
 ├── common.h
 ├── parser.h
 ├── pennfat.c
 └── pennos.c

1. Make a file called `Makefile` (case sensitive)
2. Write triples in this format:

● Colon after target is required
● prereqs are delimited by spaces
● command lines must start with a TAB, NOT

SPACES
○ Can have multiple commands
○ Can split over multiple lines by ending lines

with ‘\’

Making a Makefile

target: prerequisites
← Tab →command
← Tab →command
← Tab →command

foo.o: foo.c foo.h bar.h
clang -g -c foo.c

use_foo: foo.o main.c
clang -g –o use_foo main.c foo.o

main.c foo.c

foo.ouse_foo

foo.h bar.h

Running Makefile

Options:

1) Just “make”
● Runs the first target

2) “make” with a target name
● Ex: `make use_foò

What does make: ‘target’ is up to date
mean?

● Target doesn’t need to be recompiled
1) Make compares timestamp of latest updates
2) If target is newer then all prereqs, up to date
3) If target is older, it gets recompiled

all: use_foo

foo.o: foo.c foo.h bar.h
clang -g -c foo.c

use_foo: foo.o main.c
clang -g –o use_foo main.c foo.o

Variables

Escaping Special Characters

● Special characters can be escaped with ‘\’
● $ is a special special, so you escape with ‘$’

Automatic Variables

● $@: Represents the target name
● $^: Lists all prerequisites
● $<: Represents the first prerequisite

initialize a variable
PROG=penn-shell

use a variable
PROMPT='"$(PROG)> "'

escape chars
EXAMPLE_1='"shell\# "' # “shell# ”
EXAMPLE_2='"$$ "' # “$ ”

CC: Defines the compiler being used (e.g. gcc, clang)

CFLAGS: Compiler flags for the C compiler

● -Wall: Enable all common warnings
● -Werror: Treat warnings as errors
● -g: Add debug information (good for valgrind/gdb)

CPPFLAGS: Flags for the C preprocessor, used with CFLAGs

● -D: Defines a macro
● -DPROMPT: Defines the PROMPT macro

○ Probably want to add for PennFAT/PennOS
clean:

● Often used as a target that removes the output of
other targets, but it is not a special word in Make

Makefile from Project 0/1

override CPPFLAGS += -DNDEBUG \
-DPROMPT=$(PROMPT)

CC = clang

CFLAGS = -Wall -Werror -g

$(PROG): $(OBJS) $(HEADERS)
$(CC) -o $@ $(OBJS) parser.o

clean:
$(RM) $(OBJS) $(PROG)

Wildcards, Pattern Rules, Functions

%: pattern rule
● Wildcard that matches any non-empty

substring for file names

wildcard: returns list of filenames matching the
pattern

● Ex: SRCS = $(wildcard src/*.c)

filter / filter-out: self explanatory
● Ex: $(filter $(INCLUDE), $(ALL))
● Ex: $(filter-out $(EXCLUDE),

$(ALL))

patsubst: substitutes text in a list based, on pattern
● Ex: OBJECTS = $(patsubst src/%.c,

obj/%.o, $(SRCS))

makes any obj/*.o files from corresponding src/*.c
file + headers
obj/%.o: src/%.c $(HEADERS)

$(CC) $(CPPFLAGS) $(CFLAGS) -c $< -o $@

gets all sources
ALL_SRCS = $(wildcard src/*.c)

filter out certain files (foo.c and bar.c)
SRCS = $(filter-out src/foo.c src/bar.c, $(ALL_SRCS))

get matching object files, from $SRCS
OBJS = $(SRCS:src/%.c=obj/%.o)

Bonus Tips

run pennos with valgrind
val:

valgrind --leak-check=full \
--show-leak-kinds=all \
--track-origins=yes \
--verbose bin/pennos

To prevent large commits:
- ignore binary files
bin/*
- ignore *.o files
*.o

.gitignore

Makefile

.PHONY: indicate that a target isn’t associated with a file

● Good for preventing name conflicts, optimization

make -B vs make -b

● -B = -always-make
○ Consider all targets as out of date, recompile

everything

○ Use this one

● -b = --no-builtin-rules
○ Disables built in implicit rules of make

○ Not very useful for us

