Recitation 9

PennFAT!

Erasing “JetFlash Transcend 8GB Media” will destroy of all
the data stored on it. Enter a name, choose a partition map
and format.

Name: DEMO
Format: | MS-DOS (FAT)

Scheme GUID Partition Map

Cancel

Table of Contents

Introduction
Standalone PennFAT
What'’s After?
Something Cool

H WN o

Disclaimer: These slides are meant for those who have a basic understanding of
PennFAT. Please review PennQOS lecture slides and come back.

Intro

FAT system splits to two parts:

FAT table and Data blocks

FAT rtlegion Data region
1

[[
SR H 8 Root | EMP
Dir TY

FAT |FAT |FAT |FAT |Root
BO Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 B11l

Dir

Index Link

0 0x2004 <— MSB=0x20 (32 blocks in FAT), LSB=0x04 (4K-byte block size)
1 OxFFFF <— Block 1 is the only block in the root directory file

2 5 <— File A starts with Block 2 followed by Block 5

3 4 <— File B starts with Block 3 followed by Block 4

4 OxFFFF <— last block of File B

5 6 <— File A continues to Block 6

6 OxFFFF <— last block of File A

FAT

Each entry is 2 byte.
First entry give info : # of FAT entries(MSB) and block size(LSB).

Then, all entries are block informations: index is block number, value is next block
number.

Second FAT entry must be ROOT DIRECTORY.
Which means, FAT[1] is root directory, so first data block must be root directory.

Next entries(FAT[1]......FAT[N])are all file block numbers.

Data block

Root Director and other files.
Root directory stores info of other files.

Metadata(64 bytes)

char name[32];
uint32_t size;
uintle_t firstBlock;
uint8_t type;
uint8_t perm;
time_t mtime;

// The remaining 16 bytes are reserved

With metadata, we will know first block number of the file, and we can get next
block number of the file by indexing FAT table.

FAT[current]=Next.
Block# ___[Net |

"0 BITMAP/SPECIAL
END

v

O 00 N O 1 A W N BB

9
END
EMPTY / UNUSED

END
END
END
8

END

[
= O

PennFAT thinks itself as a hard disk, but actually a binary file.

Milestone 1 - Standalone PennFAT

./pennfat

pennfat> mkfs minfs 1 O
MAKE A FILE SYSTEM!

pennfat> mount minfs

MOUNT IT!

/O

minfs

pennfat> touch f1 f2 £3

pennfat> cat -w fl

PennFAT

HOST OS
FILESYSTEM

Terminal

mkfs

- Do not overthink it!

TRUNCATE(2) Linux Programmer's Manual TRUNCATE(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int truncate(const char xpath, off_t length);
int ftruncate(int fd, off t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

truncate():
_XOPEN_SOURCE >= 500
|| /* Since glibc 2.12: %/ _POSIX C_SOURCE >= 200809L
|| /* Glibc versions <= 2.19: %/ _BSD_SOURCE

ftruncate():
_XOPEN_SOURCE >= 500
|| /% Since glibc 2.3.5: %/ _POSIX C_SOURCE >= 200112L
|| /* Glibc versions <= 2.19: %/ _BSD_SOURCE

DESCRIPTION
The truncate() and ftruncate() functions cause the regular file named by path or referenced by fd to be trun-—
cated to a size of precisely length bytes.

Quick mkfs exercise

pennfat> mkfs pikachu 16 2

Name of Filesystem? pikachu

How many blocks in FAT? 16

How many entries in FAT? 16*1024/2=8192

How many blocks in DATA? 8192-1=8191

How big is pikachu in bytes? FAT + DATA = 8192*2 + 81911024 = 8403968

o K WN -

mount

- mmap(2) - creates a new mapping in the virtual address space of the calling
process.

Virtual Memory

~

uint16_t* fat = mmap() T

/

More Clarifications

touch FILE ...

- Creates the file ONLY. Does not allocate any memory for it as it has no data written into it.
- ...means multiple files can be created at once

- mv SOURCE DEST
- Renames SOURCE to DEST ONLY.
- Nothing else. Really.

- cat FILE ... [-w/a OUTPUT_FILE]

- Read contents of FILE(s) and overwrite/append to OUTPUT_FILE
- cp-h

- Your HOST OS is files in your docker container

- Everything else are files in your file system (pikachu)

- chmod
- Isincluded too!

Some More Clarifications...

- name[0]
- Thisis the INTEGER O (Ox00) not ASCII O (0x30)
- Whatis 1, what is 27

- file type
- What is O: Unknown, 4: Symbolic Link?

- default permissions
- Follow UNIX! Read&Write is appropriate here

- Do we mmap FAT only or the entire Filesystem?
- Up to you. Both ways are valid

- What if .7
- Uptoyou!

TL;DR

1. Specifications should be followed. (Read the write-up carefully!)
2. When in doubt, follow UNIX behaviors

3. Implementation details are 100% up to youl!
a. Ifyou think it is appropriate, go ahead!

THIS IS YOUR MILESTONE!

What's After?

- PennOS and PennFAT Interaction

- f_functions

These are your own system calls!
These provide the connection between PennOS Shell and your File System

- You may use functionalities you implemented in standalone PennFAT to
implement f_functions

- You MUST use f_functions to run ANY user-level functions like cat, echo, touch
redirections, etc.

Any Questions?

