
Recitation 9
PennFAT!

Table of Contents

1. Introduction
2. Standalone PennFAT
3. What’s After?
4. Something Cool

Disclaimer: These slides are meant for those who have a basic understanding of
PennFAT. Please review PennOS lecture slides and come back.

Intro

FAT system splits to two parts:

FAT table and Data blocks

FAT

Each entry is 2 byte.

First entry give info : # of FAT entries(MSB) and block size(LSB).

Then, all entries are block informations: index is block number, value is next block
number.

Second FAT entry must be ROOT DIRECTORY.

Which means, FAT[1] is root directory, so first data block must be root directory.

Next entries(FAT[1]......FAT[N])are all file block numbers.

Data block

Root Director and other files.

Root directory stores info of other files.

Metadata(64 bytes)

With metadata, we will know first block number of the file, and we can get next
block number of the file by indexing FAT table.

FAT[current]=Next.

PennFAT thinks itself as a hard disk, but actually a binary file.

Milestone 1 - Standalone PennFAT

./pennfat

pennfat> mkfs minfs 1 0

MAKE A FILE SYSTEM!

pennfat> mount minfs

MOUNT IT!

pennfat> touch f1 f2 f3

pennfat> cat -w f1

HOST OS
FILESYSTEMminfs

PennFAT

I/O

Terminal

mkfs

- Do not overthink it!

Quick mkfs exercise

pennfat> mkfs pikachu 16 2

1. Name of Filesystem? pikachu
2. How many blocks in FAT? 16
3. How many entries in FAT? 16*1024/2=8192
4. How many blocks in DATA? 8192-1=8191
5. How big is pikachu in bytes? FAT + DATA = 8192*2 + 8191*1024 = 8403968

mount

- mmap(2) - creates a new mapping in the virtual address space of the calling
process.

minfs

2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B

.

.

.

PennFAT

Virtual Memory

uint16_t* fat = mmap()

More Clarifications

- touch FILE …
- Creates the file ONLY. Does not allocate any memory for it as it has no data written into it.
- … means multiple files can be created at once

- mv SOURCE DEST
- Renames SOURCE to DEST ONLY.
- Nothing else. Really.

- cat FILE … [-w/a OUTPUT_FILE]
- Read contents of FILE(s) and overwrite/append to OUTPUT_FILE

- cp -h
- Your HOST OS is files in your docker container
- Everything else are files in your file system (pikachu)

- chmod
- Is included too!

Some More Clarifications…

- name[0]
- This is the INTEGER 0 (0x00) not ASCII 0 (0x30)
- What is 1, what is 2?

- file type
- What is 0: Unknown, 4: Symbolic Link?

- default permissions
- Follow UNIX! Read&Write is appropriate here

- Do we mmap FAT only or the entire Filesystem?
- Up to you. Both ways are valid

- What if …?
- Up to you!

TL;DR

1. Specifications should be followed. (Read the write-up carefully!)
2. When in doubt, follow UNIX behaviors
3. Implementation details are 100% up to you!

a. If you think it is appropriate, go ahead!

THIS IS YOUR MILESTONE!

What’s After?

- PennOS and PennFAT Interaction
- f_functions

- These are your own system calls!
- These provide the connection between PennOS Shell and your File System

- You may use functionalities you implemented in standalone PennFAT to
implement f_functions

- You MUST use f_functions to run ANY user-level functions like cat, echo, touch
redirections, etc.

Any Questions?

