IIPEIIATING(SYSTEM

Recitation 10

What's Next???

Table of Contents

What have you done so far?
Next steps for the Scheduler
Next steps for the File System
Final Integration

H WN o

Milestone 1: You should be able to...

Scheduler:

- Schedule processes with different priorities
- Send your own signals using k_process_Kkill
- Use the logger to debug

File System:

- mkfs and mount a file system

- Interact with the file system
What happens when you create a file? When you write to a file? Is? chmod?

Scheduler: Things to double check

If all queues (-1, O, 1) are empty, it should schedule “idle” process
- Any empty queues should not be scheduled
- Blocked/stopped processes should also not be scheduled

p_waitpid should check for a state change
- le.it’'s not enough to just check if child’s state != Running

p_waitpid, p_Kill, etc. should error if provided pid is not a child process
CheCk |Ogs -|- \‘top\ for Schedu”ng top - 13:40:52 up 45 min, O users, load average: 0.01, 0.02, 0.00

Tasks: 8 total, 1 running, 7 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.1 us, 0.3 sy, 0.0 ni, 99.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3933.5 total, 2399.4 free, 425.2 used, 1108.9 buff/cache

MiB Swap: 512.0 total, 512.0 free, 0.0 used. 3061.9 avail Mem

SHR S %CPU

3

COMMAND
:00.01 bash
:00.02 bash
:00.05 bash
:00.01 bash
:00.00 sleep
:00.00 sleep
:00.00 sleep
0:00.01 top

i
0
0
0
0
0
0
0
0

(o lollolololNolNolNo]
© 0000000000

Scheduler: Next Steps

- Sleep process (if not already implemented)
Should not consume CPU
Should work with multiple sleeping processes

- Add mounting of file system
E.g. . /pennos fatfs [schedlog]
Keep track of file descriptor tables for each process you spawn

- Implement W_WIF...(status) macros for p_waitpid if you haven’t already
Will be needed for shell

- Replace read(), fprint(), etc. with f_write(), f_read(), etc.
‘nice’ command to change process priority

File System: Next Steps

- Each process will have an “open file descriptor table”
Reserved fds for STDIN, STDOUT (at least)

- Somehow globally keep track of currently open files and their permissions
FILE structs?
Linked List?

- A user level program should be able to write to stdout using the same
interface as it would write to a PennFAT file.

- If a user level program is calling read(2), then you are doing something
wrong.

File System: System Calls

- Your own system calls!

- Mimic the behavior of C system calls in <cstdio.h> library
https://cplusplus.com/reference/cstdio/

- Calls to STDIN, STDOUT or your PennFAT filesystem

https://cplusplus.com/reference/cstdio/

File System: System Calls Example

$ cat
What should be done?

1. Create a process for cat
2. Read from STDIN
3. Write to STDOUT

What system calls should be used?

f_read(int fd, int n, char *buf), f_write(int fd, const char *str, int n)

File System: File Corruption

- Write-write lock
- If a process opens a file with write permissions, any other processes will be blocked (call error)
from opening the same file with write permissions
- Processes can read, though

- Cannot remove a file that is currently being used by another process

- Make use of the flag name[0] = 2
- What happens to the open FILEs struct?
- How about the file descriptor table?

Final Touches: Shell

- Synchronous Child Waiting

- Shell attempts to wait on ALL children using p_waitpid before reprompt
- Redirections

- Parsing
- May use parser.o
- Terminal Signal Handling
- Ctrl-Z, Ctrl-C should not stop or terminate PennOS
- Relay the signal to the proper thread via user-system calls
- Ctrl-D or 1ogout will exit PennOS
- Terminal Control of stdin

- If a process tries to take control of stdin when it should not, send a S_SIGSTOP to it
- Should not be using tcsetpgrp(2)

Final Touches: Error Handling

- errno.h, p_perror

- Have global ERRNO macros

- Call p_perror for PennOS System call errors like f_open, p_spawn

- Call perror(3) for any host OS System call error like malloc(3) or open(2)

Final Touches - Abstraction!

Shell
oy ..
— Terminal

Shell Built-ins:

cat, sleep, busy, echo, Is,
touch, mv, cp, rm, chmod,
ps, kill, zombify, orphanify,
nice, nice_pid, man, bg,
fg, jobs, logout

PennOS Kernel
Level Functions

k_functions:
K_process_create, k_process_Kill,
k,process_cleanup, ...

)

C System Calls

open(2), read(2), write(2), Iseek(2)

PennOS User
System Calls

f_functions:

f_open, f_read, f_write, f_close,
f_unlink, f_lseek, f_lIs, ...
p_functions:

p_spawn, p_waitpid, p_Kill, p_exit, ...

Final Touches: Shell Scripts

$ echo echo linel >script
$ echo echo line2 >>script
$ cat script

echo linel

echo line?Z

S chmod +x script

$ script > out

$ cat out

linel

line?2

echo linet

echo line2

script

Final Touches: Companion Document

Doxygen:

https://www.doxygen.nl/

https://www.gnu.org/software/gsasl/doxygen/gsasl.pdf

Or just write your own

- Include functions for shell builtins, PennOS system calls, but not every single
helper function needs to be there
- Include Global Variables, structs, enums, and macros you create and use

https://www.doxygen.nl/
https://www.gnu.org/software/gsasl/doxygen/gsasl.pdf

Any Questions?

