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Milestone 1: You should be able to…

Scheduler:

- Schedule processes with different priorities
- Send your own signals using k_process_kill
- Use the logger to debug

File System:

- mkfs and mount a file system
- Interact with the file system

- What happens when you create a file? When you write to a file? ls? chmod? 



Scheduler: Things to double check

- If all queues (-1, 0, 1) are empty, it should schedule “idle” process
- Any empty queues should not be scheduled
- Blocked/stopped processes should also not be scheduled

- p_waitpid should check for a state change
- I.e. it’s not enough to just check if child’s state != Running

- p_waitpid, p_kill, etc. should error if provided pid is not a child process
- Check logs + `top` for scheduling



Scheduler: Next Steps

- Sleep process (if not already implemented)
- Should not consume CPU
- Should work with multiple sleeping processes

- Add mounting of file system
- E.g. ./pennos fatfs [schedlog]
- Keep track of file descriptor tables for each process you spawn

- Implement W_WIF…(status) macros for p_waitpid if you haven’t already
- Will be needed for shell

- Replace read(), fprint(), etc. with f_write(), f_read(), etc.
- `nice` command to change process priority



File System: Next Steps

- Each process will have an “open file descriptor table”
- Reserved fds for STDIN, STDOUT (at least)

- Somehow globally keep track of currently open files and their permissions
- FILE structs?
- Linked List?

- A user level program should be able to write to stdout using the same 
interface as it would write to a PennFAT file. 

- If a user level program is calling read(2), then you are doing something 
wrong.



File System: System Calls

- Your own system calls!
- Mimic the behavior of C system calls in <cstdio.h> library

- https://cplusplus.com/reference/cstdio/

- Calls to STDIN, STDOUT or your PennFAT filesystem

https://cplusplus.com/reference/cstdio/


File System: System Calls Example

$ cat

What should be done?

1. Create a process for cat
2. Read from STDIN
3. Write to STDOUT

What system calls should be used?

f_read(int fd, int n, char *buf), f_write(int fd, const char *str, int n)



File System: File Corruption

- Write-write lock
- If a process opens a file with write permissions, any other processes will be blocked (call error) 

from opening the same file with write permissions
- Processes can read, though

- Cannot remove a file that is currently being used by another process
- Make use of the flag name[0] = 2
- What happens to the open FILEs struct?
- How about the file descriptor table?



Final Touches: Shell

- Synchronous Child Waiting
- Shell attempts to wait on ALL children using p_waitpid before reprompt

- Redirections
- Parsing

- May use parser.o

- Terminal Signal Handling
- Ctrl-Z, Ctrl-C should not stop or terminate PennOS
- Relay the signal to the proper thread via user-system calls
- Ctrl-D or logout will exit PennOS

- Terminal Control of stdin
- If a process tries to take control of stdin when it should not, send a S_SIGSTOP to it
- Should not be using tcsetpgrp(2)



Final Touches: Error Handling

- errno.h, p_perror
- Have global ERRNO macros
- Call p_perror for PennOS System call errors like f_open, p_spawn
- Call perror(3) for any host OS System call error like malloc(3) or open(2)



Final Touches - Abstraction!

Terminal

Shell Built-ins:
cat, sleep, busy, echo, ls, 
touch, mv, cp, rm, chmod, 
ps, kill, zombify, orphanify, 
nice, nice_pid, man, bg, 
fg, jobs, logout

Shell PennOS Kernel 
Level Functions

C System Calls

f_functions:
f_open, f_read, f_write, f_close, 
f_unlink, f_lseek, f_ls, …

p_functions:
p_spawn, p_waitpid, p_kill, p_exit, …

k_functions:
K_process_create, k_process_kill, 
k_process_cleanup, … open(2), read(2), write(2), lseek(2)

PennOS User 
System Calls

Has access

Has access
No access
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Final Touches: Shell Scripts

$ echo echo line1 >script
$ echo echo line2 >>script
$ cat script
echo line1
echo line2
$ chmod +x script
$ script > out
$ cat out
line1
line2

script

echo line1
echo line2



Final Touches: Companion Document

Doxygen: 

https://www.doxygen.nl/

https://www.gnu.org/software/gsasl/doxygen/gsasl.pdf

Or just write your own

- Include functions for shell builtins, PennOS system calls, but not every single 
helper function needs to be there

- Include Global Variables, structs, enums, and macros you create and use

https://www.doxygen.nl/
https://www.gnu.org/software/gsasl/doxygen/gsasl.pdf


Any Questions?


