
CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Course Review
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Everyone should have already contacted their group, and should
get started working on it.

▪ Full Thing due ~April 22nd (Yesterday)

• Can still use late tokens, so late deadline is April 26th

• After you submit, you need to schedule a meeting with your TA to
demonstrate that it is working

▪ There will be a PennOS Team evaluation form that goes out
sometime soon

• Will be due on the last day of classes: wednesday (5/1) @ midnight

2

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Administrivia

❖ Post semester survey

▪ To be released soon, due sometime next week

❖ We released stress.c and stress.h for testing your PennOS
kernel

❖ The full PennOS demo plan is on ed, please look at it!

❖ CIS TA Application is out now!

▪ 2400 is “due” April 26th @ midnight

3

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS going? Any questions related to it?

4

pollev.com/tqm

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of
some things. (for example: I will provide parts of the man pages
for various system calls)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

5

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must
remember some things

▪ High level concepts or fundamentals. I do not expect you to
remember every minute detail.

• E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll
everywhere questions)

6

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part
even if you haven’t finished the current part

7

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic
name.

❖ Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

❖ State how the topic(s) relate to the exam problem and
answer the question being asked.

8

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review
are still testable

❖ Recitation after lecture is exam review

9

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Practice Problems

❖ Processes vs Threads

❖ Memory Allocation

❖ Caches

❖ Scheduling

❖ Virtual Memory

❖ Threads & Data Races

❖ Deadlock

10

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Sometimes we want to call software that is written in
another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

11

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Probably threads. Threads and processes are both
parallelizable, but processes have a larger overhead since
they have separate address spaces that need to be
switched between.

12

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Sometimes we want to call software that is written in
another language. If it is written as a library with the
proper support (e.g. TensorFlow is in C++ but callable
from Python), we could use threads. If we want to invoke
a program that is already compiled (isn’t a library/doesn't
have a callable interface) we could not use threads. We
would have to use fork & exec. Why?

❖ Part of exec is that it replaces the entire address space
with the program we want to run. The address space
initial state is (mostly) specified by the program
executable. If we tried to load in the program into just
one thread, it would affect the memory space that is
being shared with other threads

13

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ We have seen two concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

14

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

15

Processes pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

16

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

17

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes (can’t redirect
w/o affecting other threads though)

Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

18

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

19

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads

❖ For each of the three concurrency models, state whether
it is possible to do each of the following.

❖ In real exam, I would ask you to briefly explain why

20

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

Yes Yes

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Q1

❖ Slab allocator is really fast, but it would be inconvenient
to replace malloc with a slab allocator. Why is that?

❖ How much internal and external fragmentation does a
slab allocator have?

21

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Q1

❖ Slab allocator is really fast, but it would be inconvenient
to replace malloc with a slab allocator. Why is that?

❖ How much internal and external fragmentation does a
slab allocator have?

22

Slab allocator only handles allocations of a specific size. If we replaced
malloc with it, we could not handle allocations of all sizes. Allocation
requests that are too big would not work and allocations of a small size
would have a lot of internal fragmentaiont

Minimal/none for both ☺ Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our
memory so that there is minimal space between each allocated chunk

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ In some instances, we want to allocate a lot of items and
limit those allocations to one scope. We call our allocator
a “temp_allocator” since it allocates things that are
expected to be temporary to some scope.

❖ For example, Consider we start with:

▪ Note that there is no metadata, just these two pointers

❖ Then we allocate 4 bytes

23

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1024 bytes

start_ptr

end_ptr

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ For example, Consider we start with:

▪ Note that there is no metadata, just these two pointers

❖ Then we allocate 4 bytes

❖ Then we allocate 16 bytes

24

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1020 bytes

start_ptr

end_ptr

Alloc’d Alloc’d …start_ptr

end_ptr

1008 bytes

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ Once we are done with our temporaries, we free the all
allocations, and we can then use it again as if “fresh”

▪ Looks the same as when we started!

❖ That is the entire API

❖ Example usage:

25

…

1024 bytes

start_ptr

end_ptr

temp_allocator t_alloc = init_allocator();

for (many iterations) {

 int *ptr = allocate(t_alloc, 4 bytes);

 image *img = allocate(t_alloc, 1024 bytes);

 // a bunch of other allocations local

 // to this scope

 clear_allocs(t_alloc);

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ How fast is our allocator at allocating things on average?
At freeing things?

❖ What does the internal and external fragmentation look
like with our allocator?

❖ Why can’t we use this as a replacement for malloc
maintaining lists of allocated & freed memory?

26

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation Part 2

❖ How fast is our allocator at allocating things on average?
At freeing things?

❖ What does the internal and external fragmentation look
like with our allocator?

❖ Why can’t we use this as a replacement for malloc
maintaining lists of allocated & freed memory?

27

Minimal/none for both ☺ Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our
memory so that there is minimal space between each allocated chunk

Very Fast, constant time for each

Malloc manages things that are freed individually that may be allocated
for varying lengths of time. This allocator assumes everything can be
allocated together.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which
ones is likely faster than the other and why?

28

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which
ones is likely faster than the other and why?

29

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Likely the one on the right. Instead of calling malloc, the array is a static size on the stack.
The stack allocation is quicker to allocate and free.

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation

❖ Lets say that in addition to malloc, we also had a custom
slab allocator implemented that could allocate chunks of
space that is 64 bytes (16 integers) large.

❖ What is one reason we may prefer the custom slab
allocator to malloc?

❖ What is one reason we may prefer malloc?

30

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at
a low level (in assembly)?

31

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at
a low level (in assembly)?

32

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Just need to decrement the stack
pointer by 10 * sizeof(int) and there
is enough space to store the array
on the stack now :P

Would also accept more vague
answers like (grow the stack by 10
integers)

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Caches

❖ The most common way to store a sequence of elements in
C++ and most languages is a dynamically resizable array
(e.g. a vector).

A vector of <int> looks something like this in memory:

33

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5, 7, 8};

}

stack

heap

v
size_t size = 3

size_t capacity = 3

int* data =

3

4

5

7

8

16 bytes 20 bytes

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does
a bool strictly need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

34

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does
a bool strictly need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector
for the bool type, and instead has each bool stored as a
bit instead of the type a stand-a-lone Boolean variable
would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a
reason why they did this. What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you
probably don’t have to call malloc as often and will have better
cache performance

35

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1
byte per bool)

▪ If we use a vector<bool> that represents each bool with a
single bit

36

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate
over all of them, roughly how many cache hits & misses
would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1
byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a
single bit
• 1 cache miss, 119 cache hits

37

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round
robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

38

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 39

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest
40

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

41

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

42

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity about page tables is that the page table itself
exists in memory. However, the memory that is used to
store some page tables are usually “pinned” into memory,
meaning that those page tables cannot be
evicted/removed from physical memory.

❖ Why is it important that some of the memory
representing these page tables remain “pinned”? Please
explain your answer.

44

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity about page tables is that the page table itself
exists in memory. However, the memory that is used to
store some page tables are usually “pinned” into memory,
meaning that those page tables cannot be
evicted/removed from physical memory.

❖ Why is it important that some of the memory
representing these page tables remain “pinned”? Please
explain your answer.

45

Page tables exist in virtual memory, meaning we may need to do a lookup of the
address of nodes in the page table. If we don’t have some addresses pinned or
specially handled, we could not do translations since we wouldn’t know what
physical memory contains the page table entries we need

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q2

❖ When we first brought up the idea of page tables, we
imagined the page table as one giant array containing one
page table entry for each page. We investigated other
page table implementations (inverted and multi-level)
since this “big array” model uses up A LOT of space for
entries that may never be used.

❖ Let’s say we had a virtual page number that we wanted to
translate to a physical page number. How would the
lookup speed of our original “big array” page table model
compare to the more space efficient page tables
implementations?

46

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q2

❖ When we first brought up the idea of page tables, we
imagined the page table as one giant array containing one
page table entry for each page. We investigated other
page table implementations (inverted and multi-level)
since this “big array” model uses up A LOT of space for
entries that may never be used.

❖ Let’s say we had a virtual page number that we wanted to
translate to a physical page number. How would the
lookup speed of our original “big array” page table model
compare to the more space efficient page tables
implementations?

47

It would be constant time lookup and only one memory access. We can index into
the page table using the virtual page number we want to ranslate

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q3

❖ One thing that is different about inverted page tables is
that the page table has one entry per physical page
instead of per virtual page.

❖ Because of this, a page table can be shared across all
processes instead of being per process. This is since all
processes share physical memory.

❖ If a page table is shared across all processes, what issues
could this cause? How does an inverted page table handle
this issue?

48

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Tables Q3

❖ One thing that is different about inverted page tables is
that the page table has one entry per physical page
instead of per virtual page.

❖ Because of this, a page table can be shared across all
processes instead of being per process. This is since all
processes share physical memory.

❖ If a page table is shared across all processes, what issues
could this cause? How does an inverted page table handle
this issue?

49

We need to make sure processes only use memory allocated to that process.
Inverted page table also stores the process ID with each entry and uses it in the
hash to make sure only processes with the specified ID accesses that entry

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Seungmin and Nate are debating the best page
replacement policy. One of them says that LRU is strictly
better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not
true, provide an example of page accesses that counters
this claim.

50

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Seungmin and Nate are debating the best page
replacement policy. One of them says that LRU is strictly
better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not
true, provide an example of page accesses that counters
this claim.

51

False: consider we have 4 physical pages and have the reference string:
0 1 2 3 0 4 1 2 3
In LRU we get 8 page faults
In FIFO we get 5 page faults

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads.
Assume that file.txt is large file containing the contents of
a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to lock and unlock?)

52

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

53

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

54

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

55

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

56

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

57

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

58

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

▪ Busy waiting possible
in second_thread.
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once
ready

59

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Deadlock

❖ Consider we are working with a data base that has N
numbered blocks. Multiple threads can access the data
base and before they perform an operation, the thread
first acquires the lock for the blocks it needs.

▪ Example: Thread1 accesses B3, B5 and B1. Thread2 may want to
access B3, B9, B6. Here is some example pseudo code:

60

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

61

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to
acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists
them in a different order. Thread 1 gets B2, Thread 2 get B4, and we
deadlock.

62

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Deadlock

▪ Someone proposes we fix this by locking the whole database
instead of locking at the block level. What downsides does this
have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for
these transactions even if two thread have completely separate
blocks they operate on, they cannot run in parallel.

63

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 3800, Spring 2024L24: Course ReviewUniversity of Pennsylvania

Deadlock

▪ How can we fix this (without locking the whole database
if that even works)?

▪ Have each thread acquire the locks in a strict increasing
numerical order. This prevents any cycles from happening

64

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

	Default Section
	Slide 1: Course Review Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Poll: how are you?
	Slide 5: Midterm Philosophy / Advice (pt. 1)
	Slide 6: Midterm Philosophy / Advice (pt. 2)
	Slide 7: Midterm Philosophy / Advice (pt. 3)
	Slide 8: Midterm Philosophy / Advice (pt. 4)
	Slide 9: Disclaimer
	Slide 10: Practice Problems
	Slide 11: Processes vs Threads
	Slide 12: Processes vs Threads
	Slide 13: Processes vs Threads
	Slide 14: Threads
	Slide 15: Threads
	Slide 16: Threads
	Slide 17: Threads
	Slide 18: Threads
	Slide 19: Threads
	Slide 20: Threads
	Slide 21: Memory Allocation Q1
	Slide 22: Memory Allocation Q1
	Slide 23: Memory Allocation Part 2
	Slide 24: Memory Allocation Part 2
	Slide 25: Memory Allocation Part 2
	Slide 26: Memory Allocation Part 2
	Slide 27: Memory Allocation Part 2
	Slide 28: Memory Allocation
	Slide 29: Memory Allocation
	Slide 30: Memory Allocation
	Slide 31: Memory Allocation
	Slide 32: Memory Allocation
	Slide 33: Caches
	Slide 34: Caches
	Slide 35: Caches
	Slide 36: Caches
	Slide 37: Caches
	Slide 38: Scheduling
	Slide 39: Scheduling
	Slide 40: Scheduling
	Slide 41: Scheduling
	Slide 42: Scheduling
	Slide 44: Page Tables Q1
	Slide 45: Page Tables Q1
	Slide 46: Page Tables Q2
	Slide 47: Page Tables Q2
	Slide 48: Page Tables Q3
	Slide 49: Page Tables Q3
	Slide 50: Page Replacement Policy
	Slide 51: Page Replacement Policy
	Slide 52: Threads & Data Races
	Slide 53: Threads & Data Races
	Slide 54: Threads & Data Races
	Slide 55: Threads & Data Races
	Slide 56: Threads & Data Races
	Slide 57: Threads & Data Races
	Slide 58: Threads & Data Races
	Slide 59: Threads & Data Races
	Slide 60: Deadlock
	Slide 61: Deadlock
	Slide 62: Deadlock
	Slide 63: Deadlock
	Slide 64: Deadlock

