
CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Midterm Review
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Administrivia

❖ Midterm is coming soon (2 days from now!)

▪ Meyerson B1 5:15 pm to 7:15 pm Thursday 2/29

▪ If you can’t make the time, please send me an email ASAP

❖ Midterm Policies posted on the course website. Please
read through them.

▪ You are allowed 1 page of notes 8.5 x 11 double sided notes

▪ Clobber policy: can show growth by doing better on the final

❖ Lecture today will be exam review

▪ Thurs will be the exam

▪ Travis will move office hours to be earlier on Thursday

2

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of
some things. (for example: I will provide parts of the man pages
for various system calls)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

3

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must
remember some things

▪ High level concepts or fundamentals. I do not expect you to
remember every minute detail.

• E.g. how a file descriptor table works should be known, but not the
exact details of what is in each entry of the open file table

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll
everywhere questions)

4

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part
even if you haven’t finished the current part

5

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic
name.

❖ Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

❖ State how the topic(s) relate to the exam problem and
answer the question being asked.

6

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review
are still testable

7

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Topics

❖ Fork() & Interleavings

❖ Signals

❖ Processes & IPC (Tcsetpgrp, pipe, exec, etc)

❖ File System

❖ Caches

8

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380380

▪ 338008

▪ 380803

9

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380380

• Possible, we have four processes
from calling fork() twice. Pid is set
from the second call to fork which
is called from two different processes
resulting in two new children.

• To get 380380 we can imagine that there are two parent-child
relationships created from the second call to fork. We can run one of
those children and then its parent in that order. We can repeat this
process for the second parent-child pair.

10

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 338008

• Impossible, we can’t have an 8 last.
Within a process it still executes in
a specific order, a process cannot
print 0 and then 8.

11

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380803

• Impossible, we can’t have a 3 as last
the parent waits on the child before
it prints “0”. This means the child
waited on must finish before the
parent prints “0”, so “3” must come
before an “0”.

12

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals: Critical Sections

❖ A vector is data structure that represents a resizable
array. For those used to Java, think of it like an ArrayList.

❖ Consider the following C snippet that outlines what a
vector of floats is and how we would push a value to the
end of it. Is there a critical section in the vec_push
function? If so, what line(s)?

13

typedef struct vec_st {

 size_t length, capacity;

 float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

 // assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

 this->length += 1; // increment length to include it

 this->eles[this->length - 1] = to_push; // add the ele to the end

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals: Critical Sections

❖ The last two lines could have an issue. Since they modify a
piece of memory that could be shared, there may be an
issue with signal handlers pushing onto the vector at the
same time. Consider the case where we increment length
and then a signal handler runs to push something onto
the end of the vector.

14

typedef struct vec_st {

 size_t length, capacity;

 float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

 // assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

 this->length += 1; // increment length to include it

 this->eles[this->length - 1] = to_push; // add the ele to the end

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals Continued

❖ Signals can happen at any time and thus there are issues
with making signal handlers safe to avoid any critical
sections. In general, it is advised to keep signal handlers as
short as possible or just avoid them at all costs.

❖ In each of these scenarios, tell us whether it is necessary
to use signals and register a signal handler. If it is
necessary, how safe is it?

❖ We want to have our program acknowledge when a user
presses CTRL + Z or CTRL + C and print a message before
exiting/stopping

15

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals Continued

❖ We want to have our program acknowledge when a user
presses CTRL + Z or CTRL + C and print a message before
exiting/stopping

▪ Probably need this to be done with signals to catch CTRL + Z and
CTRL + C. Can’t catch them otherwise

▪ The printing may not be safe since we are modifying global state
when we go through the file system to print

16

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals Continued

❖ The user needs to type floating point numbers to stdin,
but there are some special floating point numbers like
NaN, infinity, and –infinity. To avoid this, we have the user
hit CTRL + C for NaN, CTRL + Z for infinity and other key
combinations for other special values.

17

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Signals Continued

❖ The user needs to type floating point numbers to stdin,
but there are some special floating point numbers like
NaN, infinity, and –infinity. To avoid this, we have the user
hit CTRL + C for NaN, CTRL + Z for infinity and other key
combinations for other special values.

▪ Do not do this. We can have the user input the floating point
values in other ways without us having to resort to using signals
to communicate this.

18

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes

❖ We want to write a in C program that will compile and
evaluate some other program. The program we are
grading is similar to penn-shredder. For this program we
write, lets assume we are running penn-shredder once
and evaluating it. We need to be able to:

▪ Specify the input and get output of the shredder

▪ Set a time limit so that penn-shredder doesn’t go infinite

▪ Setup penn-shredder to receive signals from the keyboard (e.g.
CTRL + C and CTRL + Z)

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain any system call you specify
non-zero for

19

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

20

System Call Number Justification

fork()

execvp()

pipe()

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

21

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe()

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

22

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid()

kill()

signal()

tcsetpgrp()

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

23

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill()

signal()

tcsetpgrp()

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

24

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 Debatable, can be justified if you used it.
I use it to kill the child after timeout has occurred.
Better than just using alarm in child since we can
handle the timeout more elegantly and print out an
error

signal()

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

25

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

signal() 1 Debatable again. Used to register SIGALRM for
timeout. Could be avoided if we register alarm in child

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these
system calls? Briefly explain your answer for every system
call.

26

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

signal() 1 … (trimmed for space see previous slides)

tcsetpgrp() 1 Debatable again. used so penn-shredder has control of
terminal and so it will get the keyboard signals and our
program won’t. Could instead register the signals in
our program with signal and use kill in handler to send
to child.

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the first
block of each directory we search

❖ Linked List Allocation

▪ Assume we know the block number of the first block in root dir

❖ Linked List Allocation via FAT

▪ Assume we know where the root directory starts in the FAT.

▪ You can also assume a FAT entry is 2 bytes.

❖ I-nodes

▪ assume we know where the I Node for the root directory is 27

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the first
block of each directory we search

❖ Linked List Allocation

▪ Assume we know the block number of the first block in root dir

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 5 reads to get and read the 5th block of the file

28

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/.bashrc, what is the worst-case number of
disk blocks that must be read in for each of the following:

▪ You can assume a block is 4096 bytes

▪ assume that directory entries we are looking for are in the first
block of each directory we search

❖ Linked List Allocation via FAT

▪ Assume we know where the root directory starts in the FAT.

▪ You can also assume a FAT entry is 2 bytes.

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 1 read to get and read the 5th block of the file
29

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ I-nodes

▪ assume we know where the I Node for the root directory is

▪ 1 read to read in the inode of the root directory

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the inode for /home/

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the inode for /home/me/

▪ 1 read for the directory entry of .bashrc inside of /home/me/

▪ 1 read for the inode of .bashrc

▪ 1 read to get and read the 5th block of the file

▪ 8 disk reads

30

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to
write to the 5th block of the file?

❖ Despite not having the best numbers, I nodes are still
chosen over FAT. Why is this the case?

31

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to
write to the 5th block of the file?

▪ Nothing changes, we would just write to the 5th block of the file
instead of reading it.

❖ Despite not having the best numbers, I nodes are still
chosen over FAT. Why is this the case?

▪ FAT takes up a lot of memory because we are caching the state of
the entire filesystem in memory.

▪ Inodes allow us to instead cache the information for relevant files
in memory, so much lower memory consumption and similar
performance for the most case.

32

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 33

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 34

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

Roughly every other time we access a point
struct, it will already be in the cache. The other
50% of the time, it needs to be fetched from
memory

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

35

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

36

Change point to just be:
struct point {

 double x, y;

}

Then Store two arrays:
point arr1[100];

color arr2[100];

// point at index I

// has color arr2[i]

Each time we access a point,
we can now load 4 points into
the cache. We now get ~25
cache misses and 75 hits

	Default Section
	Slide 1: Midterm Review Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Midterm Philosophy / Advice (pt. 1)
	Slide 4: Midterm Philosophy / Advice (pt. 2)
	Slide 5: Midterm Philosophy / Advice (pt. 3)
	Slide 6: Midterm Philosophy / Advice (pt. 4)
	Slide 7: Disclaimer
	Slide 8: Topics
	Slide 9: fork
	Slide 10: fork
	Slide 11: fork
	Slide 12: fork
	Slide 13: Signals: Critical Sections
	Slide 14: Signals: Critical Sections
	Slide 15: Signals Continued
	Slide 16: Signals Continued
	Slide 17: Signals Continued
	Slide 18: Signals Continued
	Slide 19: Processes
	Slide 20: Processes Cont.
	Slide 21: Processes Cont.
	Slide 22: Processes Cont.
	Slide 23: Processes Cont.
	Slide 24: Processes Cont.
	Slide 25: Processes Cont.
	Slide 26: Processes Cont.
	Slide 27: File System Block Allocation
	Slide 28: File System Block Allocation
	Slide 29: File System Block Allocation
	Slide 30: File System Block Allocation
	Slide 31: File System Block Allocation
	Slide 32: File System Block Allocation
	Slide 33: Caches Q1
	Slide 34: Caches Q1
	Slide 35: Caches Q2
	Slide 36: Caches Q2

