
CIS 3800 Fall 2023: Midterm 0

Oct 19, 2023

First Name : ___

Last Name : ___

Penn ID : ___

Please fill in your information above, read the following pledge, and sign in the space below:

I neither cheated myself nor helped anyone cheat on this exam. All answers on this exam are

my own. Violation of this pledge can result in a failing grade.

Sign Here : ___

Exam Details & Instructions:

• There are 7 questions made of 12 parts (and a short bonus) worth a total of 100 points.

• You have 120 minutes to complete this exam.

• The exam is closed book. This includes textbooks, phones, laptops, wearable devices,

other electronics, and any notes outside of what is mentioned below.

• You are allowed one 8.5 x 11 inch sheet of paper (double sided) for notes.

• Any electronic or noise-making devices you do have should be turned off and put away.

• Remove all hats, headphones, and watches.

• Your explanations should be more than just stating a topic name. Don't just say

something like (for example) "because of threads" or just state some facts like

"threads are parallel and lightweight processes". State how the topic(s) relate to the

exam problem and answer the question being asked.

Advice:

• Remember that there are 7 questions made up of a total of 12 parts (and a short bonus 8th

question). Please budget your time so you can get to every question.

• Do not be alarmed if there seems to be more space than needed for an answer, we try to

include a lot of space just in case it is needed.

• Try to relax and take a deep breath. Remember that we also want you to learn from this.

A bad grade on this exam is not the end of the world. This grade also can be overwritten

by a better grade with the Midterm “Clobber” Policy (details in the course syllabus)

Please put your PennID at the top of each page in case the pages become separated.

If you need extra space, the last page of this exam is blank for you as scratch space and to

write answers. If you use it, please clearly indicate on that page and under the

corresponding question prompt that you are using the extra page to answer that question.

Please also write your full name and PennID at the top of the sheet.

PennID: ______________________

2

Question 1 {24 pts}

One of the nice things about processes (and threads but this question is about processes!) is that

we can run processes in parallel across multiple CPUs, allowing for the operation to be

completed faster.

We want to take advantage of this parallelism in our code by forking some number of processes

and splitting up the work across each of the processes.

For each of the problems we will identify a problem we want to solve and how we would split it

across multiple processes.

We will also list some system calls related to processes, and you will have to tell us roughly how

many times we would need that system call to complete the desired task. You can either choose

either 0 or 1 or N, each are explained here:

- 0: to indicate that the system call is not needed

- 1: to indicate that the system call only needs to be invoked once or a constant number of

times (roughly the same number of invocations regardless of number of processes)

- N: to indicate that the system call would need to be invoked a number of times

proportional to N, where N is the number of processes we intend to use.

You will have to briefly (3 sentences max) justify each answer that is not 0

Note: when deciding what functionality is needed, focus on what is

strictly needed for the task to be completed. Do not worry about

functionality that is not described.

Note: we are asking how many times the system call gets invoked

when the program runs. Not how many times it shows up in your

code file.

You may use this blank space for scratch work. The questions begin on the next page.

PennID: ______________________

3

Part 1 {12 pts}

We have a large array of integers stored in program memory, but we want to find the sum of all

numbers in the array.

We fork N processes, and have each process calculate the sum for a different part of the array.

We would make sure that the whole array is divided evenly between processes and there is no

overlap.

The parent process could then get the results from all processes, add them together and get the

final result.

System call 0 / 1 / N

fork()

waitpid()

pipe()

execvp()

kill()

signal()
For each system call you gave a non-zero answer to, please briefly (3 sentences max) justify

why it is needed and why that many times.

Reminder: we have an appendix at the end of the exam containing part of the man page for most

of these functions

PennID: ______________________

4

Part 2 {12 pts}

We have a list of files, and we want to convert every letter in every file to lower case.

We fork N processes, and evenly split the files across the processes, so that each process will

handle different files. Each process would then go through its assigned files and set every

uppercase letter to lowercase.

System call 0 / 1 / N

fork()

waitpid()

pipe()

execvp()

kill()

signal()
For each system call you gave a non-zero answer to, please briefly (3 sentences max) justify

why it is needed and why that many times.

Reminder: we have an appendix at the end of the exam containing part of the man page for most

of these functions

PennID: ______________________

5

Question 2 {9 pts}

Consider the following block of code that waits for a child process to complete/terminate:

pid_t pid = … ; // assume initialized to the pid of the

 // process we want to wait for

int status;

pid_t ret = waitpid(pid, &status, WNOHANG);

if (ret == -1) {

 perror("waitpid errored");

 exit(EXIT_FAILURE);

}

while(ret == 0 && !WIFSIGNALED(status) && !WIFEXITED(status)) {

 ret = waitpid(pid, &status, WNOHANG);

 if (ret == -1) {

 perror("waitpid errored");

 exit(EXIT_FAILURE);

 }

}

We could also have the same code but modify both of our calls to waitpid to instead be:

waitpid(pid, &status, 0);

One of these implementations is considered better than the other. Which example and why?

Limit your answer to 3 sentences at maximum.

Note: you should be familiar with waitpid, but we’ve included part of the man page for it in the

appendix if you need it.

Remember what we say on the front page about requirements for an explanation.

PennID: ______________________

6

Question 3 {16 pts}

Consider that we were working with a 32-bit system with byte addressability and a page size of

4096 (212) bytes. You can assume that we have 1 GiB (230) bytes of physical memory.

- 32-bit system means that each virtual address is 32 bits. (4 bytes)

- Byte Addressability means each byte in memory has a unique address.

Part 1{4 pts}

On such a system, how many bits are needed for each of the following? No explanation is

needed, feel free to leave some answers in terms of powers of 2 if that would be easier.

Item Number of Bits Needed

Virtual Page Number

Page Offset

Physical Page Number

Physical Address

Part 2 {6 pts}

In this 32-bit system, if we were to use a multi-level page table, we could have a two-level table

with 10-bits to index into each level of the table. Consider the following page diagram of what

the multi-level page table looks like:

0x000 NULL

0x001 NULL

 …

0x3FC

0x3FD NULL

0x3FE NULL

0x3FF

QUESTION CONTINUES ONTO THE NEXT PAGE

0x000 0x0C0DE

0x001 0x03800

0x002 0x05480

0x003 INVALID

 ….

0x3FF 0x03001

0x000 INVALID

0x001 0x0DEAD

0x002 0x2BEEF

0x003 0x13AB0

 ….

0x3FF 0x0ADD

PennID: ______________________

7

Part 2 continued

Using the page table described and displayed on the previous page, what are the indexes into

each level of the table and the physical address translation for the virtual address 0xFFC03001. If

the conversion cannot be completed since the page we want to access is not in physical memory,

state that there is a page fault for the physical address. We’ve provided a hexadecimal-to-binary

conversion table and rewritten the address in binary for your convenience.

Hex Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Part 3 {6 pts}

In a 64-bit machine (with the same addressability and page size) we would have instead used 9-

bits to index into each level in our page table. 10 bits for 32-bit machines and 9 bits 64-bit

machines are carefully chosen for those architectures, what is significant about using those

numbers for these machines? Explain in 2-3 sentences at maximum.

Hint: this has to do with the size of something.

 Value

(answers in this column)

First Level Index

Second Level Index

Physical Address

Hexadecimal: 0xFFC03001

Binary: 1111 1111 1100 0000 0011 0000 0000 0001

 10 bits 10 bits

PennID: ______________________

8

Question 4 {6 pts}

Consider a new page replacement policy called MRU (Most Recently Used). MRU can be

thought of as the "opposite" of LRU. Where the page that was most recently used is evicted from

physical memory if another page needs to be brought in. (e.g., if page A was most recently

accessed, and we then wanted to load in a page not in the physical memory, page A would be

evicted to make space for the new page)

Assume we have virtual pages A B C D, start with empty physical memory and physical memory

can only hold 2 physical pages.

What is a sequence of page accesses that would result in MRU having less page faults than

LRU? Please give a sequence of accesses that is exactly 6 page accesses long in the boxes

below.

Access # 0 1 2 3 4 5

Page

accessed

Question 5 {8 pts}

The buddy allocator has an issue with internal fragmentation, forcing allocations to allocate a

number of pages that is a power of 2. As a result of this, if I wanted to allocate many items that

are of size 1024, I would waste 3072 bytes per allocation (assuming pages are 4096 bytes).

Instead, we could instead make a big allocation from buddy and use that allocation as a slab for

the slab allocator.

How is this different from just allocating some space directly from buddy? What happened to all

the memory that would have been internal fragmentation from a buddy algorithm allocation?

Please explain your answer briefly in at most 3 sentences.

PennID: ______________________

9

Question 6 {18 pts}

One of the most common data structures in computer sciences is a map or a hash-map structure.

Note: you do not need to be familiar with maps, our algorithm analysis to solve this problem.

This problem is about memory, the maps are just the setting for the question.

What is a map?

I believe you should be familiar with what a map is from taking the pre-requisite course, but I've

included a brief refresher on a map here. Feel free to skip to the memory diagrams if you think

you are already familiar. You do not need to be familiar with hashing to answer this question.

A map is a data structure that has two associated types, a key type and a value type. Users can

store keys to be associated with a value. A Map is thus a collection of key-value pairs. Common

operations include adding a new pairing, setting an existing pairing to have a new value, finding

a specific pair from just the key, and iterating over all elements in the map.

Memory Diagrams

One common way to store key-value pairs is to use a chaining hash map. In memory, we can

think of it as being represented like this:

Another way key-value pairs can be stored is by storing them in an array. Structures like this are

typically called a flat map:

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

key = …

value = …

next = NULL

key = …

value = …

next =

key = …

value = …

next = NULL

key = …

value = …

next = NULL

Chaining Hash Map

 int size

 int num_chains

 linked_list[] Chains

5

3

Flat Map

 int size

 pair[] kv_pairs

PennID: ______________________

10

Part 1 {10 pts}

Let’s say we write code that has a huge map containing many elements. The map uses 4-byte

integers as keys and 4-byte floats as values (8 bytes together).

We analyze our code and notice that by far the most common operation performed on this

structure is to iterate through all the key value pairs in the structure. If we wanted to maximize

performance for that operation, which structure would be better? Why? Your answer should be

2-3 sentences.

Hint: if you are thinking about algorithm analysis like O(n) stuff or counting the number

instructions executed, you are doing it wrong

Part 2 {8 pts}

If the key value pairs were large (let’s say that they are the size of a page, 4096 bytes) we don’t

get the same performance boost we got before when iterating over the entries and the two map

implementations seem much more comparable at run-time.

Why might this be the case? Please explain why. Limit your answers to 3 sentences at maximum.

PennID: ______________________

11

Question 7 {18 pts}

Part 1 {8 pts}

This question will refer to some of the same situations encountered in question 1, but that

question does not have to be answered correctly (or even at all) to answer this question.

Let’s say we are trying to solve the problem in question 1 part 1 with threads. Namely:

We have a large array of integers stored in program memory, but we want to find the sum

of all numbers in the array.

Instead of forking N processes, we could instead create N threads and split the work up across

threads. Then the parent thread could get the result from all the child threads and calculate the

final sum.

Threads are considered “lightweight” processes and thus switching between threads would be

faster than switching between processes. Even if we ignore speed to context switch, using

threads would allow for a faster running program that solves this problem. Why is this the case?

Please justify your answer. Your answer should be 3 sentences at maximum.

PennID: ______________________

12

Part 2 {10 pts}

Note: it is okay if you are a bit rusty on your hw assignments, you should be able to answer

this question even if those assignments did not go well.

Forking processes works pretty well for some problems. One example would be programs like

penn-shredder or penn-shell. In those assignments, you wrote some code that looks like this:

// this is pseudo code

// feel free to raise your hand if you don’t understand what

// it means. You don’t need the exact details though.

while (!eof) {

 input = getline(stdin);

 cmd = parse_cmd(input);

 for each program in cmd {

 pid = fork();

 if (pid == 0) {

 // child

 execvp(program);

 }

 }

 for each pid we forked {

 waitpid(pid);

 }

}

We may be tempted to do something like this with threads, but it is rather difficult, if not

impossible, to support this to work for every legal command one could input into the shell.

What is one thing that could go wrong if we tried to implement penn-shell and/or penn-shredder

by creating threads instead of fork processes? Please answer in at most 3 sentences.

Reminder: we have some man pages in the appendix at the back of the exam

Clarification: it is not just about taking the code and replacing fork with pthread_create. If we

wanted to recreate the functionality of penn_shell with threads and could change the program

however needed, there would be at least one issue that we cannot fix without calling `fork()`.

What is one of those issues?

PennID: ______________________

13

Question 8 {1 pt} all submissions will get this point

Select one member of the course staff. Create a piece of art (e.g. drawing, poem, anything you

like) about that person.

If you don’t want to do that, then put anything here! What’s your favourite thing about C

programming? Anything you want to show us or want us to know?

PennID: ______________________

14

Appendix

Waitpid man page

SYNOPSIS

 pid_t waitpid(pid_t pid, int *wstatus, int options);

Description

This system call is used to wait for state changes in a child of

the calling process and obtains information about the child

whose state has changed.

If a child has already changed state, then these calls return

immediately. Otherwise, they block until either a child changes

state or a signal handler interrupts the call.

The value of options is an OR of zero or more of the following

constants:

WNOHANG

 return immediately if no child has exited.

WUNTRACED

 also return if a child has stopped.

If wstatus is not NULL, waitpid() stores status information in

the int to which it points. This integer can be inspected with

the following macros

WIFEXITED(wstatus)

 returns true if the child terminated normally, that is, by

calling exit() or by returning from main().

WIFSIGNALED(wstatus)

 returns true if the child process was terminated by a

signal

RETURN VALUE

on success, returns the process ID of the child whose state has

changed; if WNOHANG was specified and one or more child(ren)

specified by pid exist, but have not yet changed state, then 0

is returned. On error, -1 is returned.

PennID: ______________________

15

execvp man page

SYNOPSIS

int execvp(const char *file, char *const argv[]);

DESCIRPTION

replaces the current process image with a new process image.

This causes the program that is currently being run by the

calling process to be replaced with a new program specified by

the argument file and, that program will have the arguments

specified by argv. The process will have a newly initialized

stack, heap, and data segments.

RETURN VALUE

does not return on success, and the text, initialized data,

uninitialized data (bss), and stack of the calling process are

overwritten according to the contents of the newly.

Returns -1 on error

pipe man page

SYNOPSIS

int pipe(int pipefd[2]);

DESCRIPTION

pipe() creates a pipe, a unidirectional data channel that can be

used for interprocess communication. The array pipefd is used to

return two file descriptors referring to the ends of the pipe.

pipefd[0] refers to the read end of the pipe. pipefd[1] refers

to the write end of the pipe.

kill man page

SYNOPSIS

int kill(pid_t pid, int sig);

DESCRIPTION

The kill() system call can be used to send any signal to any

process group or process. In normal usage, signal sig is sent to

the process with the ID specified by pid.

PennID: ______________________

16

signal man page

SYNOPSIS

 typedef void (*sighandler_t)(int);

 sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

signal() sets the disposition of the signal signum to handler,

which is either SIG_IGN, SIG_DFL, or the address of a

programmer-defined function (a "signal handler").

pthread_create

SYNOPSIS

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

 void *(*start_routine) (void *), void *arg);

DESCRIPTION

The pthread_create() function starts a new thread in the

calling process. The new thread starts execution by invoking

start_routine(); arg is passed as the sole argument of

start_routine().

pthread_join

SYNOPSIS

int pthread_join(pthread_t thread, void **retval);

DESCRIPTION

The pthread_join() function waits for the thread specified by

thread to terminate. If that thread has already terminated, then

pthread_join() returns immediately.

If retval is not NULL, then pthread_join() copies the return

value of the target thread into the location pointed to by

retval.

PennID: ______________________

17

This page is intentionally left blank.

