
CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Introductions, C refresher
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C Refresher

▪ Memory Layout

▪ Demo (make, man pages)

▪ Malloc, free, pointers

▪ stdin, stdout

3

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Instructor: Travis McGaha

❖ UPenn CIS faculty member since August 2021

▪ Second Semester with CIS 3800 (and we are trying new stuff)

▪ CIS 2400 in 21fa & 22fa

▪ CIT 5950 in 22sp & 23sp

❖ More on my personal website:
https://www.cis.upenn.edu/~tqmcgaha/

❖ Schedule meeting w/ me

❖ Unofficial office hours right after class

❖ Official office hours TBD

4

https://www.cis.upenn.edu/~tqmcgaha/

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Latch/Flip-Flop

Adder

Mux/Demux

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Overview

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Wittgenstein’s Ladder

❖ "My propositions serve as elucidations in the following
way: anyone who understands me eventually recognizes
them as nonsensical, when he has used them—as steps—
to climb beyond them. (He must, so to speak, throw away
the ladder after he has climbed up it.)

He must transcend these propositions, and then he will
see the world aright."

▪ Ludwig Wittgenstein (Tractatus Logico-Philosophicus)

14

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "The necessarily simplified stories we tell children and
students as a foundation for understanding so that
eventually they can discover that they are not, in fact,
true."

▪ Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable
Instruction in 'The Science of Discworld' ‘)

15

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "A lie-to-children is a statement that is false, but which
nevertheless leads the child's mind towards a more
accurate explanation, one that the child will only be able
to appreciate if it has been primed with the lie"

▪ Terry Pratchett, Ian Stewart & Jack Cohen (The Science of
Discworld)

16

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What color is the sky?

17

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What color is grass?

18

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is the LC4 model for a computer true?

❖ Is it a useful model?

19

Computer

Operating System

Process

Eh……. no

Yes

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is memory one giant array of bytes?

❖ Is this a useful model?

20

Eh……. no
Yes

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

Course Overview

OS does A LOT more

than just printing,

reading input, video

display, and timer

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

Course Overview

THERE IS A LOT

GOING ON TO

SUPPORT THIS

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

Course Overview

THERE IS A LOT

GOING ON TO

SUPPORT THIS

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

I’m going to lie to you (but in a good way)

❖ "All models are wrong, but some are useful."

▪ Same source as below.

❖ "If it were necessary for us to understand how every
component of our daily lives works in order to function -
we simply would not."

▪ AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

❖ This course will reveal more details, but there is still a ton
I am leaving out. Even what I say that is accurate, will
likely change in the future.

24

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

I’M ALREADY LYING TO YOU

❖ This idea of a “ladder” and how one just goes up it is a lie.
Education is often not linear and often is a tangled web of
ideas.

❖ But it is a good metaphor :)

❖ I think there is also a good discussion of whether these
count as “lies”. Is using the word “lie” a lie?

25

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

This goes beyond this course

26

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

This goes beyond this course

27

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

This goes beyond this course

28

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

This goes beyond this course

29

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Prerequisites

❖ Course Prerequisites:

▪ CIS 2400

▪ Teamwork & Willingness/happy to spend substantial time coding

❖ What you should be familiar with already:

▪ C programming

▪ C Memory Model

▪ Computer Architecture Model

▪ Basic UNIX command line skills

❖ HW0 is tuned so that it will help refresh you on these.

▪ But it still covers new content!

▪ Even if you think you know C, get started sooner rather than later. 30

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

CIS 3800 Learning Objectives

❖ To leave the course with a better understanding of:

▪ How a computer runs/manages multiple programs

▪ How the previous point may affect the code we write

▪ How to read documentation

▪ Experience writing a massive programming project FROM
SCRATCH with others.

▪ More comfortable writing C code

❖ Topics list/schedule can be found on course website

▪ Note: These topics may be tweaked

31

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Disclaimer

❖ This is a digest, READ THE SYLLABUS

▪ https://www.seas.upenn.edu/~cis3800/current/documents/syllab
us

32

https://www.seas.upenn.edu/~cis3800/current/documents/syllabus
https://www.seas.upenn.edu/~cis3800/current/documents/syllabus

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Components: Textbook

❖ Textbook (0)

▪ Textbooks recommended in pasts

• A.S. Tanenbaum. Modern Operating Systems (4th Edition onwards).
Prentice-Hall.

• W. Richard Stevens and Stephen A. Rago. Advanced Programming in
the UNIX Environment (2/e or 3/e). Addison-Wesley Professional.

▪ Systems for all: https://diveintosystems.org/book/

• Free online textbook, pretty well written

▪ Linux Man pages:

• https://linux.die.net/man/

• https://www.man7.org/linux/man-pages/

• The man command in the terminal

• DEMO:

– name a C function

– tcsetpgrp 33

https://diveintosystems.org/book/
https://linux.die.net/man/
https://www.man7.org/linux/man-pages/

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Components: Part 1

❖ Lectures (~26)

▪ Introduces concepts, slides & recordings available on canvas

▪ In lecture polling. Polls are not counted towards credit

❖ Pre-recorded videos (many)

▪ Entirely optional

▪ Goes over lecture material or demonstrates something for projects

❖ Check-ins “Quizzes” (~10)

▪ Unlimited attempt low-stake quizzes on canvas to make sure you
are caught up with material

▪ Lowest two are dropped

❖ Exams (2)

▪ Two in-person exams, two pages of notes allowed

▪ Details TBD 34

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Programming Facilities

❖ Docker

▪ Same environment as the autograder

▪ Instructions for setup to be posted soon

❖ Speclab cluster, as a fallback incase Docker does not work

▪ Instructions on course website

▪ To see status:
https://www.seas.upenn.edu/checklab/?lab=speclab

❖ DO NOT use Eniac machines to develop projects
for this class!

35

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Project 0

❖ Project 0

▪ Parsing a C string for into a “command” so that it is easier for us
to use that data in future projects.

▪ Idea is to help you get comfortable with coding in C

• C strings

• Structs

• Pointers

• Allocation

▪ New project! We tried to calibrate the difficulty correctly

▪ Done Individually

▪ Will be posted soon!!

36

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Project 1 & 2

❖ Project 1

▪ Unix “Shell” – command interpreter (e.g. sh, bash, etc)

▪ Excellent way to learn about how system calls are supported

and used.

▪ Done individually

▪ Code review

❖ Project 2

▪ Unix “Shell” – the real deal

▪ Redirection, pipelines, background/foreground processing,

job control

▪ Groups of two.

37

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

PennOS

❖ Best way to learn about an operating systems is to

build one.

❖ Build all the main features of an OS (in emulation)

❖ Will either be done in Groups of 4 or 2 (because we

haven’t decided yet, we will announce closer to the

midterm.)

❖ By the end of the project, you will:

▪ Learn about how different subsystems in Unix interact with

each other

▪ Learn about priority scheduling, file systems, user shell

interactions

▪ Become a really good and confident systems programmer

38

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

PennOS

❖ There is a paper on this:

http://netdb.cis.upenn.edu/papers/pennos.pdf at an

ACM OS journal.

❖ Group evaluation done by the end of semester.

▪ Team members with lower than 15% contribution to the

group will get their course grade downgraded.

▪ Team members who do almost nothing will get a failing

grade in the course

39

http://netdb.cis.upenn.edu/papers/pennos.pdf

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

HW Policies

❖ Students who did not contribute to group

projects will get F grade regardless of overall
score.

❖ Late Policy

▪ You are given 5 late tokens.

▪ Tokens are counted per student and can only be used on some
assignments.

▪ Two tokens used at max per assignment

▪ Each token grants 48 hours of extra time

▪ If there are extenuating circumstances, please let me know.
I can be lenient, we can work something out

40

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ You will be caught:

▪ Careful grading of all written homeworks by teaching staff

▪ Measure of Software Similarity (MOSS):
http://theory.stanford.edu/~aiken/moss/

▪ Successfully used in several classes at Penn

❖ Zero on the assignment, zero for class participation (3%).
F grade if caught twice.

▪ First-time offenders will be reported to Office of Student Conduct
with no exceptions. Possible suspension from school

▪ Your friend from last semester who gave the code will have their
grade retrospectively downgraded.

41

http://theory.stanford.edu/~aiken/moss/

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ Generative AI

▪ I am skeptical of its usefulness for your learning and for your
success in the course

▪ Some articles on the topic:

• https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but

• https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

▪ Not banned, but not recommended. Use your best judgement.

❖ You will not help your overall grade and happiness:

▪ Quizzed individually during project demo, exams on project in
finals

▪ If you can’t explain your code in OH, we can turn you away.

• This is different than being confused on a bug or with C, this is ok

▪ Personal lifelong satisfaction from completing PennOS
42

https://www.aisnakeoil.com/p/chatgpt-is-a-bullshit-generator-but
https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Grading

❖ Breakdown:

▪ Project 0 penn-parser: (8%)

▪ Project 1 penn-shredder: (6%)

▪ Project 2 penn-shell: (15%)

▪ Project 3 PennOS: (34%)

▪ Exams (34%)

• 17% each (probably)

▪ Check-in Quizzes(3%)

❖ Final Grade Calculations:

▪ I would LOVE to give everyone an A+ if it is earned

▪ Final grade cut-offs will be decided privately at the end of the
Semester. What is used in previous semesters is in the syllabus

43

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Course Infrastructure

❖ Course Website: www.seas.upenn.edu/~cis3800/24sp/

▪ Materials, Schedule, Syllabus …

❖ Docker or Speclab

▪ Coding environment for hw’s

❖ Gradescope

▪ Used for HW Submissions

❖ Poll Everywhere

▪ Used for lecture polls

❖ Ed Discussion

▪ Course discussion board

44

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Getting Help

❖ Ed

▪ Announcements will be made through here

▪ Ask and answer questions

▪ Sign up if you haven’t already!

❖ Office Hours:

▪ Can be found on calendar on front page of course website

▪ Starts next week for all TAs

❖ 1-on-1’s:

▪ Can schedule 1-on-1’s with Travis

▪ Should attend OH and use Ed when possible, but this is an option
for when OH and Ed can’t meet your needs 45

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

We Care

❖ I am still figuring things out, but we do care about you and
your experience with the course

▪ Please reach out to course staff if something comes up and you
need help

❖ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

▪ We know that things can be tough, but please reach out if you
feel tempted. We want to help

▪ Read more on academic integrity in the syllabus

46

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns so far?

47

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C refresher

▪ Pointers

▪ Arrays

48

I Will go through parts of this
relatively fast.

Review this on your own

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Does this C code compile?

▪ The format specifiers (e.g. "%d\n") are fine

49

pollev.com/tqm

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 int x = 5;

 printf("%d\n", x);

 char* string = get_string();

 printf("%s\n", string);

 return EXIT_SUCCESS;

}

char* get_string() {

 return "Hello, World!";

}

Demo: hello_print.c

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Does this C code compile?

▪ The format specifiers (e.g. "%d\n") are fine

50

pollev.com/tqm

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 int x = 5;

 printf("%d\n", x);

 char* string = get_string();

 printf("%s\n", string);

 return EXIT_SUCCESS;

}

char* get_string() {

 return "Hello, World!";

}

Demo: hello_print.c

get_string needs to be declared
before it is used

You don’t have to put all the
variables at the top of the function

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: Downloading & Running

❖ Commands:

▪ curl -o 00-code.zip
https://www.seas.upenn.edu/~cis3800/24sp/code/00-code.zip

▪ unzip 00-code.zip

▪ cd 00-code

❖ To compile:

▪ Make

❖ To run:

▪ ./<program name>

▪ E.g.

• ./get_input
51

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Aside: Memory

❖ Where all data, code, etc are
stored for a program

❖ Broken up into several
segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an
address

52

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Aside: Memory as a giant array

❖ In CIS 2400 we introduced memory as a giant array of
bytes, with each byte having its own address:

❖ Our variables live in memory

53

int main(int argc, char* argv[]) {

 char a = 'a';

 char b = 'b';

 return 0;

}

0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E

'a' 'b'

0x0 0x1 0x2
…

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as
an int

54

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

55

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 595;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointers as References

❖ The exact value stored in a pointer almost never matters,
we treat them more like references

❖ In this class we will never hardcode in an address into a
pointer. We will never do something like :

▪ Read as: "`ptr` contains the address 0x7fffff5194"

▪ *with the exception of NULL

❖ Instead, we write code that is more often like:

▪ Read as: "`ptr` refers to the integer `example`"

▪ Or "`ptr` contains the address of the integer `example`"
56

int *ptr = 0x7fffff5194;

int example = 5;

int *ptr = &a;

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

NULL

❖ NULL is a memory location that is guaranteed to be
invalid
▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of
memory!

57

int main(int argc, char** argv) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example

58

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

Initial values

are garbage

In real code, you

should always

initialize variables

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

59

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

60

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

61

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example

62

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

63

pollev.com/tqm

#include <stdio.h>

#include <stdlib.h>

void modify_int(int x) {

 x = 5;

}

int main() {

 int num = 3;

 modify_int(num);

 printf("%d\n", num);

 return EXIT_SUCCESS;

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

❖ How could we fix it?
E.g. make modify point
actually modify a point

64

pollev.com/tqm

#include <stdio.h>

#include <stdlib.h>

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point p) {

 p.x = 3800;

 p.y = 4710;

}

int main() {

 Point p = {1100, 2400};

 modify_point(p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: pass_by.c

❖ Everything in C is pass-by value (e.g. a copy is passed to
the function)

❖ HOWEVER, we can pass a copy of a pointer (e.g. a
reference to something) to mimic pass-by-reference.

❖ Demo pass_by.c

▪ Note: most lecture code will be available on the course website

65

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

66

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

67

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

68

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

69

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

70

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Gap slide

❖ Slide to make clear that we are moving onto a new
example (that looks very similar)

71

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

72

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

Buggy version said:
ptr = &new_point

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

73

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

74

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

75

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

76

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 3800
y = 4710

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference

77

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 3800
y = 4710

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

78

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

79

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

soln1

soln2

?

?

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

80

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d ?

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

81

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

82

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

solve_quad

soln1

soln2

0

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

83

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

solve_quad

soln1

soln2

0.0

-2.0

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

84

int solve_quadratic(double a, double b, double c,

 double* soln1, double* soln2){

 double d = b*b – 4 * a * c;

 if (d >= 0) {

 *soln1 = (-b + sqrt(d)) / (2*a);

 *soln2 = (-b - sqrt(d)) / (2*a);

 return 1;

 } else {

 return 0;

 }

}

int main(int argc, char** argv) {

 double soln1, soln2; // populated by function call

 solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

 // ...

}

main

soln1

soln2

0.0

-2.0

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Arrays

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable
or hard-code it in

85

type name[size]

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the
array

• Cannot be assigned to / changed

86

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Multi-dimensional Arrays

❖ Generic 2D format:
type name[rows][cols];

▪ Still allocates a single, contiguous chunk of memory

▪ C is row-major

▪ Can access elements with multiple indices

• A[0][1] = 7;

• my_int = A[1][2];

▪ The entries in this array are stored in memory in row major order
as follows:

•A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]

▪ 2-D arrays normally only useful if size known in advance.
Otherwise use dynamically-allocated data and pointers (later)

87

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

88

int sumAll(int a[]) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Passes in address of start of array

int sumAll(int* a) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers

▪ E.g. ptr[3] = ...;

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Solution: Pass Size as Parameter

89

int sumAll(int a[], int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

❖ Standard idiom in C programs

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

90

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

for (int i = 0; i < size; i++) {

 sum += ptr[i];

}

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

91

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

92

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

1 past the end of the array!

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

93

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

94

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 3

ptr

end

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

95

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 8

ptr

end

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

96

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 17

ptr

end

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have
use array of characters as a string

❖ Example:

99

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!";

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Null Termination

❖ Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

100

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS

THE CAUSE OF MANY BUGS

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

101

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There is something wrong with this function

❖ What is it? How do we fix this function w/o changing the
function signature

102

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There is something wrong with this function

❖ What is it? How do we fix this function w/o changing the
function signature

103

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There is something wrong with this function

❖ What is it? How do we fix this function w/o changing the
function signature

104

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

char* result

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There is something wrong with this function

❖ What is it? How do we fix this function w/o changing the
function signature

105

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

read_stdin

str ['H', 'i', '\0']

char* result

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There is something wrong with this function

❖ What is it? How do we fix this function w/o changing the
function signature

106

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

?????????

char* result

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

static function variables

❖ Functions can declare a variable as static

107

#include <stdio.h> // for printf

#include <stdlib.h> // for EXIT_SUCCESS

int next_num();

int main(int argc, char** argv) {

 printf("%d\n", next_num()); // prints 1

 printf("%d\n", next_num()); // then 2

 printf("%d\n", next_num()); // then 3

 return EXIT_SUCCESS;

}

int next_num() {

 // marking this variable as static means that

 // the value is preserved between calls to the function

 // this allows the function to "remember" things

 static int counter = 0;

 counter++;

 return counter;

}

Can be thought of as a

global variable that is

“private” to a function

This is how some functions

(like one in proj0) can

“remember” things.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

108

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Aside: sizeof

❖ sizeof operator can be applied to a variable or a type
and it evaluates to the size of that type in bytes

❖ Examples:
▪ sizeof(int)– returns the size of an integer

▪ sizeof(double)– returns the size of a double precision
number

▪ struct my_struct s;

• sizeof(s) – returns the size of the struct s

▪ my_type *ptr

• sizeof (*ptr) – returns the size of the type pointed to by ptr

❖ Very useful for Dynamic Memory

109

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, maybe with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)

❖ C requires you to manually manage memory

▪ More control, and more headaches 110

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Heap API

❖ Dynamic memory is managed in a location in memory
called the "Heap"

▪ The heap is managed by user-level runetime library (libc)

▪ Interface functions found in <stdlib.h>

❖ Most used functions:
▪ void *malloc(size_t size);

• Allocates memory of specified size

▪ void free(void *ptr);

• Deallocates memory

❖ Note: void* is “generic pointer”. It holds an address,
but doesn’t specify what it is pointing at.

❖ Note 2: size_t is the integer type of sizeof()
111

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

malloc()

❖ d

❖ malloc allocates a block of memory of the requested
size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need

void *malloc(size_t size);

// allocate a 10-float array

float* arr = malloc(10*sizeof(float));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

112

ALWAYS CHECK FOR NULL

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

▪ Freed memory becomes eligible for future allocation

▪ does nothing.

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

113

free(pointer);

float* arr = malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // OPTIONAL

free(NULL);

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for
Dynamic allocation

❖ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

114

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Dynamic Memory Example

115

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Dynamic Memory Example

116

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 USED

0x4003 USED

0x4004 USED

0x4005 USED

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Dynamic Memory Example

117

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Fixed read_stdin()

118

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

 if (str == NULL) {

 return NULL;

 }

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Dynamic Memory Pitfalls

❖ Buffer Overflows
▪ E.g. ask for 10 bytes, but write 11 bytes

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on malloc’d strings

❖ Not checking for NULL

▪ Malloc returns NULL if out of memory

▪ Should check this after every call to malloc

❖ Giving free() a pointer to the middle of an allocated region

▪ Free won’t recognize the block of memory and probably crash

❖ Giving free() a pointer that has already been freed
▪ Will interfere with the management of the heap and likely crash

❖ malloc does NOT initialize memory
▪ There are other functions like calloc that will zero out memory

119

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we malloc something, but don’t free it?

▪ That block of memory cannot be reallocated, even if we don’t use
it anymore, until it is freed

▪ If this happens enough, we run out of heap space and program
may slow down and eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all
references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C doesn’t

120

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

❖ Which line below is first to (most likely) cause a crash?

▪ Yes, there are a lot of bugs, but not all cause a crash ☺

▪ See if you can
find all the bugs!

121

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5;

 b[0] += 2;

 c = b+3;

 free(&(a[0]));

 free(b);

 free(b);

 b[0] = 5;

 return 0;

}

1

2

3

4

5

6

7

Practice Question pollev.com/tqm

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

122

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

123

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

124

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

125

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

126

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

127

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

Crash!

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

128

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

This “double free”

would also cause the

program to crash

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

129

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

CIS 3800, Fall 2024L00: Intro, C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

130

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

5

?

5

???

X
Note: Arrow points
to next instruction.

	Default Section
	Slide 1: Introductions, C refresher Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Instructor: Travis McGaha
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Wittgenstein’s Ladder
	Slide 15: “Lies-to-children”
	Slide 16: “Lies-to-children”
	Slide 17: Poll: how are you?
	Slide 18: Poll: how are you?
	Slide 19: We lied to you (but in a good way)
	Slide 20: We lied to you (but in a good way)
	Slide 21
	Slide 22
	Slide 23
	Slide 24: I’m going to lie to you (but in a good way)
	Slide 25: I’M ALREADY LYING TO YOU
	Slide 26: This goes beyond this course
	Slide 27: This goes beyond this course
	Slide 28: This goes beyond this course
	Slide 29: This goes beyond this course
	Slide 30: Prerequisites
	Slide 31: CIS 3800 Learning Objectives
	Slide 32: Disclaimer
	Slide 33: Course Components: Textbook
	Slide 34: Course Components: Part 1
	Slide 35: Programming Facilities
	Slide 36: Project 0
	Slide 37: Project 1 & 2
	Slide 38: PennOS
	Slide 39: PennOS
	Slide 40: HW Policies
	Slide 41: Collaboration Policy Violation
	Slide 42: Collaboration Policy Violation
	Slide 43: Course Grading
	Slide 44: Course Infrastructure
	Slide 45: Getting Help
	Slide 46: We Care
	Slide 47: Poll: how are you?
	Slide 48: Lecture Outline
	Slide 49: Poll: how are you?
	Slide 50: Poll: how are you?
	Slide 51: Demo: Downloading & Running
	Slide 52: Aside: Memory
	Slide 53: Aside: Memory as a giant array
	Slide 54: Pointers
	Slide 55: Pointer Operators
	Slide 56: Pointers as References
	Slide 57: NULL
	Slide 58: Pointer Example
	Slide 59: Pointer Example
	Slide 60: Pointer Example
	Slide 61: Pointer Example
	Slide 62: Pointer Example
	Slide 63: Poll: how are you?
	Slide 64: Poll: how are you?
	Slide 65: Demo: pass_by.c
	Slide 66: Visualization: faulty pass by reference
	Slide 67: Visualization: faulty pass by reference
	Slide 68: Visualization: faulty pass by reference
	Slide 69: Visualization: faulty pass by reference
	Slide 70: Visualization: faulty pass by reference
	Slide 71: Gap slide
	Slide 72: Visualization: fixed pass by reference
	Slide 73: Visualization: fixed pass by reference
	Slide 74: Visualization: fixed pass by reference
	Slide 75: Visualization: fixed pass by reference
	Slide 76: Visualization: fixed pass by reference
	Slide 77: Visualization: fixed pass by reference
	Slide 78: Output Parameters
	Slide 79: Output Parameters
	Slide 80: Output Parameters
	Slide 81: Output Parameters
	Slide 82: Output Parameters
	Slide 83: Output Parameters
	Slide 84: Output Parameters
	Slide 85: Arrays
	Slide 86: Using Arrays
	Slide 87: Multi-dimensional Arrays
	Slide 88: Arrays as Parameters
	Slide 89: Solution: Pass Size as Parameter
	Slide 90: Pointer Arithmetic
	Slide 91: Pointer Arithmetic
	Slide 92: Pointer Arithmetic
	Slide 93: Pointer Arithmetic
	Slide 94: Pointer Arithmetic
	Slide 95: Pointer Arithmetic
	Slide 96: Pointer Arithmetic
	Slide 99: Strings without Objects
	Slide 100: Null Termination
	Slide 101: Demo: get_input.c
	Slide 102: Demo: get_input.c
	Slide 103: Demo: get_input.c
	Slide 104: Demo: get_input.c
	Slide 105: Demo: get_input.c
	Slide 106: Demo: get_input.c
	Slide 107: static function variables
	Slide 108: Memory Allocation
	Slide 109: Aside: sizeof
	Slide 110: What is Dynamic Memory Allocation?
	Slide 111: Heap API
	Slide 112: malloc()
	Slide 113: free()
	Slide 114: The Heap
	Slide 115: Dynamic Memory Example
	Slide 116: Dynamic Memory Example
	Slide 117: Dynamic Memory Example
	Slide 118: Fixed read_stdin()
	Slide 119: Dynamic Memory Pitfalls
	Slide 120: Memory Leaks
	Slide 121: Practice Question
	Slide 122: Memory Corruption - What Happens?
	Slide 123: Memory Corruption - What Happens?
	Slide 124: Memory Corruption - What Happens?
	Slide 125: Memory Corruption - What Happens?
	Slide 126: Memory Corruption - What Happens?
	Slide 127: Memory Corruption - What Happens?
	Slide 128: Memory Corruption - What Happens?
	Slide 129: Memory Corruption - What Happens?
	Slide 130: Memory Corruption - What Happens?

