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Poll: how are you?

❖ How are you?
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Administrivia

❖ Project 0 penn-parser:

▪ out later tonight

▪ “due” Tuesday Jan 30

▪ Actual due date: submit with penn-shredder, but you need to 
finish it before penn-shredder will work anyways.

▪ Your first C programming assignment

❖ Pre-semester survey:

▪ out at 7pm

▪ “due” wed Jan 31

▪ Just a short survey

3
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

4



CIS 3800, Spring 2024L01:  C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have 
use array of characters as a string

❖ Example:

5

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!"; 
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Null Termination

❖ Arrays don’t have a length, but we mark the end of a 
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

6

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS 

THE CAUSE OF MANY BUGS
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Demo: get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

7
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Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing 
the function signature

8

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str[MAX_INPUT_SIZE];

 

  ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}

pollev.com/tqm
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Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing 
the function sig?

9

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str[MAX_INPUT_SIZE];

 

  ssize_t res = read(STDIN_FILENO,

        str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}

pollev.com/tqm

// assuming this is how the function is called

char* result = read_stdin();
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Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing 
the function sig?

10

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str[MAX_INPUT_SIZE];

 

  ssize_t res = read(STDIN_FILENO,

        str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}

pollev.com/tqm

main

The Stack

char* result

// assuming this is how the function is called

char* result = read_stdin();



CIS 3800, Spring 2024L01:  C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing 
the function sig?

11

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str[MAX_INPUT_SIZE];

 

  ssize_t res = read(STDIN_FILENO,

        str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}

pollev.com/tqm

main

The Stack

read_stdin

str ['H', 'i’, …]

char* result

// assuming this is how the function is called

char* result = read_stdin();
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Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing 
the function sig?

12

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str[MAX_INPUT_SIZE];

 

  ssize_t res = read(STDIN_FILENO,

        str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}

pollev.com/tqm

main

The Stack

?????????

char* result

// assuming this is how the function is called

char* result = read_stdin();
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

13
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Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0;    // global var

int main() {

  counter++;

  printf("count = %d\n",counter);

  return 0;

}

int foo(int a) {

  int x = a + 1;     // local var

  return x;

}

int main() {

  int y = foo(10);   // local var

  printf("y = %d\n",y);

  return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

14
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Aside: sizeof

❖ sizeof operator can be applied to a variable or a type 
and it evaluates to the size of that type in bytes

❖ Examples:
▪ sizeof(int)– returns the size of an integer 

▪ sizeof(double)– returns the size of a double precision 
number

▪ struct my_struct s;

• sizeof(s) – returns the size of the struct s

▪ my_type *ptr

• sizeof (*ptr) – returns the size of the type pointed to by ptr

❖ Very useful for Dynamic Memory

15
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What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information 
to make a final decision on how much to allocate

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, maybe with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)

❖ C requires you to manually manage memory

▪ More control, and more headaches 16
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Heap API

❖ Dynamic memory is managed in a location in memory 
called the "Heap"

▪ The heap is managed by user-level runetime library (libc)

▪ Interface functions found in <stdlib.h>

❖ Most used functions:
▪ void *malloc(size_t size);

• Allocates memory of specified size

▪ void free(void *ptr);

• Deallocates memory

❖ Note: void* is “generic pointer”.  It holds an address, 
but doesn’t specify what it is pointing at.

❖ Note 2: size_t is the integer type of sizeof()
17
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malloc()

❖ d

❖ malloc allocates a block of memory of the requested 
size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need

void *malloc(size_t size);

// allocate a 10-float array

float* arr = malloc(10*sizeof(float));

if (arr == NULL) {

  return errcode;

}

...   // do stuff with arr

18

ALWAYS CHECK FOR NULL
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free()

❖ Usage:  free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

▪ Freed memory becomes eligible for future allocation

▪ does nothing.

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

19

free(pointer);

float* arr = malloc(10*sizeof(float));

if (arr == NULL)

  return errcode;

...           // do stuff with arr

free(arr);

arr = NULL;   // OPTIONAL

free(NULL);
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The Heap

❖ The Heap is a large pool of available memory to use for 
Dynamic allocation

❖ This pool of memory is kept track of with a small data 
structure indicating which portions have been allocated, 
and which portions are currently available.

❖ malloc:

▪ searches for a large enough unused block of memory 

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

20
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Dynamic Memory Example

21

#include <stdlib.h>

int main() {

  char* ptr = malloc(4*sizeof(char));

  if (ptr == NULL)

    return EXIT_FAILURE;

  ...           // do stuff with ptr

  free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED
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Dynamic Memory Example

22

#include <stdlib.h>

int main() {

  char* ptr = malloc(4*sizeof(char));

  if (ptr == NULL)

    return EXIT_FAILURE;

  ...           // do stuff with ptr

  free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 USED

0x4003 USED

0x4004 USED

0x4005 USED

0x4006

0x4007

0x4008 USED

0x4009 USED
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Dynamic Memory Example

23

#include <stdlib.h>

int main() {

  char* ptr = malloc(4*sizeof(char));

  if (ptr == NULL)

    return EXIT_FAILURE;

  ...           // do stuff with ptr

  free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED
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Fixed read_stdin()

24

#define MAX_INPUT_SIZE 100

char* read_stdin() {

  char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

  if (str == NULL) {

    return NULL;

  }

 

  ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

  // error checking

  if (res <= 0) {

    return NULL;

  }

  return str;

}
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Demo (continued): get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

❖ What was the other issue? (other than not using malloc)

25
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Dynamic Memory Pitfalls

❖ Buffer Overflows
▪ E.g. ask for 10 bytes, but write 11 bytes

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on malloc’d strings

❖ Not checking for NULL

▪ Malloc returns NULL if out of memory

▪ Should check this after every call to malloc

❖ Giving free() a pointer to the middle of an allocated region

▪ Free won’t recognize the block of memory and probably crash

❖ Giving free() a pointer that has already been freed
▪ Will interfere with the management of the heap and likely crash

❖ malloc does NOT initialize memory
▪ There are other functions like calloc that will zero out memory

26
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Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we malloc something, but don’t free it?

▪ That block of memory cannot be reallocated, even if we don’t use 
it anymore, until it is freed

▪ If this happens enough, we run out of heap space and program  
may slow down and eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all 
references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C doesn’t

27
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static function variables

❖ Functions can declare a variable as static

28

#include <stdio.h>  // for printf

#include <stdlib.h> // for EXIT_SUCCESS

int next_num();

int main(int argc, char** argv) {

  printf("%d\n", next_num()); // prints 1

  printf("%d\n", next_num()); // then 2

  printf("%d\n", next_num()); // then 3

  return EXIT_SUCCESS;

}

int next_num() {

  // marking this variable as static means that

  // the value is preserved between calls to the function

  // this allows the function to "remember" things

  static int counter = 0;

  counter++;

  return counter;

}

Can be thought of as a 

global variable that is 

“private” to a function

This is how some functions 

(like one in proj0) can 

“remember” things. 
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❖ Which line below is first to (most likely) cause a crash?

▪ Yes, there are a lot of bugs, but not all cause a crash ☺

▪ See if you can
find all the bugs!

29

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;

  b[0] += 2;

  c = b+3;

  free(&(a[0]));

  free(b);

  free(b);

  b[0] = 5;

  return 0;

}

1

2

3

4

5

6

7

Practice Question pollev.com/tqm
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Memory Corruption - What Happens?

30

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

31

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

32

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

5

Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

33

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

5

Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

34

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

35

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points 
to next instruction.

Crash!
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Memory Corruption - What Happens?

36

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points 
to next instruction.

This “double free” 

would also cause the 

program to crash
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Memory Corruption - What Happens?

37

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points 
to next instruction.
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Memory Corruption - What Happens?

38

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int a[2];

  int* b = malloc(2*sizeof(int));

  int* c;

  a[2] = 5;   // assigns past the end of an array

  b[0] += 2;  // assumes malloc zeros out memory

  c = b+3;    // Ok, but if we use c, problem

  free(&(a[0]));  // free something not malloc'ed

  free(b);

  free(b);    // double-free the same block

  b[0] = 5;   // use a freed (dangling) pointer

  // any many more!

  return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

5

?

5

???

X
Note: Arrow points 
to next instruction.
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

39
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Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

❖ Generic declaration:

40

// declaring the struct type

struct point {

  float x;

  float y;

};

// declaring a variable

struct point pt;

// declaring the struct type

typedef struct point_st {

  float x;

  float y;

} point;

// declaring a variable

point pt;
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Structured Data Initialization

❖ A struct is a C datatype that contains a set of fields

▪ Acts similarly to primitive variables

❖ Generic declaration:

41

typedef struct point_st {

  float x;

  float y;

} point;

point pt;

point origin = {0.0f, 0.0f};

point other = (point) {

  .x = 3.14f,

  .y = 3.800f,

};

pt = origin; // pt now contains 0.0f, 0.0f

<- Initializer List

Default values are still garbage!

<- with designators

^ same as  pt.x = origin.x;

        pt.y = origin.y;
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Accessing struct Fields

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

42

typedef struct point_st {

  float x, y;

} Point;

int main(int argc, char** argv) {

  Point p1 = {0.0, 0.0};

  Point* p1_ptr = &p1;

  p1.x = 1.0;

  p1_ptr->y = 2.0;  // equivalent to (*p1_ptr).y = 2.0;

  return 0;

}
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Output parameters (again)

❖ One way to handle multiple return values through output 
parameters
▪ This function generates an array of int and returns the length (or 

-1 on error)

43

ssize_t gen_arr(int** output_arr); 

ssize_t is just a signed integer type to represent a size
Signed SIZE Type
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❖ How do you think we call this function?
▪ It generates an array of int and returns the length (or -1 on 

error)

44

Practice Question pollev.com/tqm

ssize_t gen_arr(int** output_arr); 
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❖ How do you think we call this function?
▪ It generates an array of int and returns the length (or -1 on 

error)

45

Practice Question pollev.com/tqm

int* arr;

ssize_t res = gen_arr(&arr);

if (res < 0) {

  // handle error

} 
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Structs vs output parameters

❖ The parameter `output_arr` is entirely for output, it 
messes with our common understanding of a parameters 
as input

❖ An alternative way this function could be written is with a 
struct that contains both values:

❖ Which do you think
is more readable?

46

ssize_t gen_arr(int** output_arr); 

typedef struct int_arr_st {

  int* eles

  size_t length;

} int_arr;

int_arr gen_arr();
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Another example

❖ Another common example are functions that produce 
something but can error.

❖ Consider this function that produces some struct (lets call 
it struct addrinfo) but can error.

❖ The first is more common in C and the C stdlib, but you 
can do either in functions you write

47

bool addr_info(struct addrinfo* output); 

typedef struct optional_addrinfo_st {

  bool has_value;

  struct addr_info value;

} optional_addrinfo;

optional_addrinfo gen_arr();
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Demo: implementing a simple int vector

❖ Demo: vec_int.c inside of 01-code.zip

▪ Starting from blank_vec_int.c

▪ Explaining design

▪ How do we implement vec_push()?

▪ Why do we need to pass in a vec_int* instead of just 
vec_int?

48
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realloc()

❖

realloc is used to “re-allocate” a block of memory to 
be the requested size
▪ This means previous values in ptr will be in the reallocated 

memory

❖ Returns a pointer to the first byte of that memory
▪ And returns NULL if the memory allocation failed!

❖ realloc(NULL, size) is equal to malloc(size)

❖ See vec_int.c for an example of how realloc is useful
49

void *realloc(void* ptr, size_t size);
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

50
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Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

51

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture
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Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, 
CMOS, gates, etc.

❖ Once we got to programming, our computer looks 
something like:

❖ This model is still useful, and can be
used in many settings

52

Computer

Operating System

Process
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Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

53

Computer

Operating System

P1 P2 P3 Pn…
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OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of 

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between 
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly

54
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU
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Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
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Stack
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Data

Saved 
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…



CIS 3800, Spring 2024L01:  C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)
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Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate 
process

• Scheduling of processors onto 
cores done by kernel

▪ This is called “Parallelism”

CPU
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Any questions so far?

❖ What I just went through was the big picture of processes. 
Many details left, some will be gone over in future 
lectures

❖ Any questions, comments or concerns so far?

61

pollev.com/tqm
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Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be 
scheduled (i.e., chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently

More states in 

future lectures

Scheduler to be covered 

in a later lecture
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Process State Lifetime (incomplete)
More states in 

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to 

stop running. Through something 

like a hardware timer interrupt
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Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs 
as part of some existing process.

❖ Control flow passes from one process to another via a 
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time



CIS 3800, Spring 2024L01:  C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run 

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

65
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Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide 

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as 
non-deterministic, details handled by the OS.

66
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()
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Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next 
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an 
integer value from the main routine

❖ exit is called once but never returns.
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Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the 
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the 
parent

▪ Returns a pid_t which is an integer type.

69

pid_t fork();
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fork() and Address Spaces

❖ Fork causes the OS
to clone the 
address space
▪ The copies of the 

memory segments are 
(nearly) identical

▪ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.

70

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

71

parent

OS

fork()
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

72

parent child

OS

clone
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

73

parent child

OS

child pid 0
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"simple" fork() example

❖ What does this print?

74

fork();

printf("Hello!\n");
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"simple" fork() example

❖ What does this print?

75

int x = 3;

fork();

x++;

printf("%d\n", x);
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fork() example

76

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}
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fork() example

77

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)
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fork() example

78

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic
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Another fork() example

79

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);
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Another fork() example

80

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);
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Another fork() example

81

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!
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Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc) 

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()
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exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the 
specified program can run

83
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execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of 
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is 
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

84

int execve(const char *file,

    char* const argv[]

    char* const envp[]);
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Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

85

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following 
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following 
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers
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Aside: Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait()
or waitpid(). (more on these functions next lecture)

86

void exit(int status);
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Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

87
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Any questions so far?

88

pollev.com/tqm

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

broken_autograder.c
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Any questions so far?

89

pollev.com/tqm

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()
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