
CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

C (cont.) & Intro to Processes
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Administrivia

❖ Project 0 penn-parser:

▪ out later tonight

▪ “due” Tuesday Jan 30

▪ Actual due date: submit with penn-shredder, but you need to
finish it before penn-shredder will work anyways.

▪ Your first C programming assignment

❖ Pre-semester survey:

▪ out at 7pm

▪ “due” wed Jan 31

▪ Just a short survey

3

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

4

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have
use array of characters as a string

❖ Example:

5

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!";

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Null Termination

❖ Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

6

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS

THE CAUSE OF MANY BUGS

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

7

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing
the function signature

8

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing
the function sig?

9

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

// assuming this is how the function is called

char* result = read_stdin();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing
the function sig?

10

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

char* result

// assuming this is how the function is called

char* result = read_stdin();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing
the function sig?

11

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

read_stdin

str ['H', 'i’, …]

char* result

// assuming this is how the function is called

char* result = read_stdin();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing
the function sig?

12

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/tqm

main

The Stack

?????????

char* result

// assuming this is how the function is called

char* result = read_stdin();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

13

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

14

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Aside: sizeof

❖ sizeof operator can be applied to a variable or a type
and it evaluates to the size of that type in bytes

❖ Examples:
▪ sizeof(int)– returns the size of an integer

▪ sizeof(double)– returns the size of a double precision
number

▪ struct my_struct s;

• sizeof(s) – returns the size of the struct s

▪ my_type *ptr

• sizeof (*ptr) – returns the size of the type pointed to by ptr

❖ Very useful for Dynamic Memory

15

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, maybe with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)

❖ C requires you to manually manage memory

▪ More control, and more headaches 16

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Heap API

❖ Dynamic memory is managed in a location in memory
called the "Heap"

▪ The heap is managed by user-level runetime library (libc)

▪ Interface functions found in <stdlib.h>

❖ Most used functions:
▪ void *malloc(size_t size);

• Allocates memory of specified size

▪ void free(void *ptr);

• Deallocates memory

❖ Note: void* is “generic pointer”. It holds an address,
but doesn’t specify what it is pointing at.

❖ Note 2: size_t is the integer type of sizeof()
17

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

malloc()

❖ d

❖ malloc allocates a block of memory of the requested
size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need

void *malloc(size_t size);

// allocate a 10-float array

float* arr = malloc(10*sizeof(float));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

18

ALWAYS CHECK FOR NULL

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

▪ Freed memory becomes eligible for future allocation

▪ does nothing.

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

19

free(pointer);

float* arr = malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // OPTIONAL

free(NULL);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for
Dynamic allocation

❖ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

20

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Dynamic Memory Example

21

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Dynamic Memory Example

22

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 USED

0x4003 USED

0x4004 USED

0x4005 USED

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Dynamic Memory Example

23

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Fixed read_stdin()

24

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

 if (str == NULL) {

 return NULL;

 }

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo (continued): get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

❖ What was the other issue? (other than not using malloc)

25

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Dynamic Memory Pitfalls

❖ Buffer Overflows
▪ E.g. ask for 10 bytes, but write 11 bytes

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on malloc’d strings

❖ Not checking for NULL

▪ Malloc returns NULL if out of memory

▪ Should check this after every call to malloc

❖ Giving free() a pointer to the middle of an allocated region

▪ Free won’t recognize the block of memory and probably crash

❖ Giving free() a pointer that has already been freed
▪ Will interfere with the management of the heap and likely crash

❖ malloc does NOT initialize memory
▪ There are other functions like calloc that will zero out memory

26

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we malloc something, but don’t free it?

▪ That block of memory cannot be reallocated, even if we don’t use
it anymore, until it is freed

▪ If this happens enough, we run out of heap space and program
may slow down and eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all
references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C doesn’t

27

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

static function variables

❖ Functions can declare a variable as static

28

#include <stdio.h> // for printf

#include <stdlib.h> // for EXIT_SUCCESS

int next_num();

int main(int argc, char** argv) {

 printf("%d\n", next_num()); // prints 1

 printf("%d\n", next_num()); // then 2

 printf("%d\n", next_num()); // then 3

 return EXIT_SUCCESS;

}

int next_num() {

 // marking this variable as static means that

 // the value is preserved between calls to the function

 // this allows the function to "remember" things

 static int counter = 0;

 counter++;

 return counter;

}

Can be thought of as a

global variable that is

“private” to a function

This is how some functions

(like one in proj0) can

“remember” things.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

❖ Which line below is first to (most likely) cause a crash?

▪ Yes, there are a lot of bugs, but not all cause a crash ☺

▪ See if you can
find all the bugs!

29

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5;

 b[0] += 2;

 c = b+3;

 free(&(a[0]));

 free(b);

 free(b);

 b[0] = 5;

 return 0;

}

1

2

3

4

5

6

7

Practice Question pollev.com/tqm

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

30

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

31

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

32

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

33

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

34

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

35

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

Crash!

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

36

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

This “double free”

would also cause the

program to crash

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

37

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Memory Corruption - What Happens?

38

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

5

?

5

???

X
Note: Arrow points
to next instruction.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

39

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

❖ Generic declaration:

40

// declaring the struct type

struct point {

 float x;

 float y;

};

// declaring a variable

struct point pt;

// declaring the struct type

typedef struct point_st {

 float x;

 float y;

} point;

// declaring a variable

point pt;

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Structured Data Initialization

❖ A struct is a C datatype that contains a set of fields

▪ Acts similarly to primitive variables

❖ Generic declaration:

41

typedef struct point_st {

 float x;

 float y;

} point;

point pt;

point origin = {0.0f, 0.0f};

point other = (point) {

 .x = 3.14f,

 .y = 3.800f,

};

pt = origin; // pt now contains 0.0f, 0.0f

<- Initializer List

Default values are still garbage!

<- with designators

^ same as pt.x = origin.x;

 pt.y = origin.y;

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Accessing struct Fields

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

42

typedef struct point_st {

 float x, y;

} Point;

int main(int argc, char** argv) {

 Point p1 = {0.0, 0.0};

 Point* p1_ptr = &p1;

 p1.x = 1.0;

 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

 return 0;

}

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Output parameters (again)

❖ One way to handle multiple return values through output
parameters
▪ This function generates an array of int and returns the length (or

-1 on error)

43

ssize_t gen_arr(int** output_arr);

ssize_t is just a signed integer type to represent a size
Signed SIZE Type

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

❖ How do you think we call this function?
▪ It generates an array of int and returns the length (or -1 on

error)

44

Practice Question pollev.com/tqm

ssize_t gen_arr(int** output_arr);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

❖ How do you think we call this function?
▪ It generates an array of int and returns the length (or -1 on

error)

45

Practice Question pollev.com/tqm

int* arr;

ssize_t res = gen_arr(&arr);

if (res < 0) {

 // handle error

}

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Structs vs output parameters

❖ The parameter `output_arr` is entirely for output, it
messes with our common understanding of a parameters
as input

❖ An alternative way this function could be written is with a
struct that contains both values:

❖ Which do you think
is more readable?

46

ssize_t gen_arr(int** output_arr);

typedef struct int_arr_st {

 int* eles

 size_t length;

} int_arr;

int_arr gen_arr();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Another example

❖ Another common example are functions that produce
something but can error.

❖ Consider this function that produces some struct (lets call
it struct addrinfo) but can error.

❖ The first is more common in C and the C stdlib, but you
can do either in functions you write

47

bool addr_info(struct addrinfo* output);

typedef struct optional_addrinfo_st {

 bool has_value;

 struct addr_info value;

} optional_addrinfo;

optional_addrinfo gen_arr();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Demo: implementing a simple int vector

❖ Demo: vec_int.c inside of 01-code.zip

▪ Starting from blank_vec_int.c

▪ Explaining design

▪ How do we implement vec_push()?

▪ Why do we need to pass in a vec_int* instead of just
vec_int?

48

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

realloc()

❖

realloc is used to “re-allocate” a block of memory to
be the requested size
▪ This means previous values in ptr will be in the reallocated

memory

❖ Returns a pointer to the first byte of that memory
▪ And returns NULL if the memory allocation failed!

❖ realloc(NULL, size) is equal to malloc(size)

❖ See vec_int.c for an example of how realloc is useful
49

void *realloc(void* ptr, size_t size);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

50

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

51

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors,
CMOS, gates, etc.

❖ Once we got to programming, our computer looks
something like:

❖ This model is still useful, and can be
used in many settings

52

Computer

Operating System

Process

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

53

Computer

Operating System

P1 P2 P3 Pn…

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

54

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Any questions so far?

❖ What I just went through was the big picture of processes.
Many details left, some will be gone over in future
lectures

❖ Any questions, comments or concerns so far?

61

pollev.com/tqm

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be
scheduled (i.e., chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently

More states in

future lectures

Scheduler to be covered

in a later lecture

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Process State Lifetime (incomplete)
More states in

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to

stop running. Through something

like a hardware timer interrupt

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs
as part of some existing process.

❖ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

65

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as
non-deterministic, details handled by the OS.

66

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

67

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an
integer value from the main routine

❖ exit is called once but never returns.

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

▪ Returns a pid_t which is an integer type.

69

pid_t fork();

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

70

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

71

parent

OS

fork()

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

72

parent child

OS

clone

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

73

parent child

OS

child pid 0

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

74

fork();

printf("Hello!\n");

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

75

int x = 3;

fork();

x++;

printf("%d\n", x);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork() example

76

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork() example

77

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

fork() example

78

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Another fork() example

79

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Another fork() example

80

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Another fork() example

81

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ C Strings

▪ Dynamic memory (malloc & realloc)

▪ Structs

❖ Processes

▪ Overview

▪ fork()

▪ exec()

82

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

83

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

84

int execve(const char *file,

 char* const argv[]

 char* const envp[]);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

85

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Aside: Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait()
or waitpid(). (more on these functions next lecture)

86

void exit(int status);

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

87

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Any questions so far?

88

pollev.com/tqm

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

broken_autograder.c

CIS 3800, Spring 2024L01: C Strings, Struct, Heap, Fork, ExecUniversity of Pennsylvania

Any questions so far?

89

pollev.com/tqm

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()

	Default Section
	Slide 1: C (cont.) & Intro to Processes Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Strings without Objects
	Slide 6: Null Termination
	Slide 7: Demo: get_input.c
	Slide 8: Demo: get_input.c
	Slide 9: Demo: get_input.c
	Slide 10: Demo: get_input.c
	Slide 11: Demo: get_input.c
	Slide 12: Demo: get_input.c
	Slide 13: Lecture Outline
	Slide 14: Memory Allocation
	Slide 15: Aside: sizeof
	Slide 16: What is Dynamic Memory Allocation?
	Slide 17: Heap API
	Slide 18: malloc()
	Slide 19: free()
	Slide 20: The Heap
	Slide 21: Dynamic Memory Example
	Slide 22: Dynamic Memory Example
	Slide 23: Dynamic Memory Example
	Slide 24: Fixed read_stdin()
	Slide 25: Demo (continued): get_input.c
	Slide 26: Dynamic Memory Pitfalls
	Slide 27: Memory Leaks
	Slide 28: static function variables
	Slide 29: Practice Question
	Slide 30: Memory Corruption - What Happens?
	Slide 31: Memory Corruption - What Happens?
	Slide 32: Memory Corruption - What Happens?
	Slide 33: Memory Corruption - What Happens?
	Slide 34: Memory Corruption - What Happens?
	Slide 35: Memory Corruption - What Happens?
	Slide 36: Memory Corruption - What Happens?
	Slide 37: Memory Corruption - What Happens?
	Slide 38: Memory Corruption - What Happens?
	Slide 39: Lecture Outline
	Slide 40: Structured Data
	Slide 41: Structured Data Initialization
	Slide 42: Accessing struct Fields
	Slide 43: Output parameters (again)
	Slide 44: Practice Question
	Slide 45: Practice Question
	Slide 46: Structs vs output parameters
	Slide 47: Another example
	Slide 48: Demo: implementing a simple int vector
	Slide 49: realloc()
	Slide 50: Lecture Outline
	Slide 51: Definition: Process
	Slide 52: Computers as we know them now
	Slide 53: Multiple Processes
	Slide 54: OS: Protection System
	Slide 55: Multiprocessing: The Illusion
	Slide 56: Multiprocessing: The (Traditional) Reality
	Slide 57: Multiprocessing: The (Traditional) Reality
	Slide 58: Multiprocessing: The (Traditional) Reality
	Slide 59: Multiprocessing: The (Traditional) Reality
	Slide 60: Multiprocessing: The (Modern) Reality
	Slide 61: Any questions so far?
	Slide 62: Process States (incomplete)
	Slide 63: Process State Lifetime (incomplete)
	Slide 64: Context Switching
	Slide 65: OS: The Scheduler
	Slide 66: Scheduler Considerations
	Slide 67: Lecture Outline
	Slide 68: Terminating Processes
	Slide 69: Creating New Processes
	Slide 70: fork() and Address Spaces
	Slide 71: fork()
	Slide 72: fork()
	Slide 73: fork()
	Slide 74: "simple" fork() example
	Slide 75: "simple" fork() example
	Slide 76: fork() example
	Slide 77: fork() example
	Slide 78: fork() example
	Slide 79: Another fork() example
	Slide 80: Another fork() example
	Slide 81: Another fork() example
	Slide 82: Lecture Outline
	Slide 83: exec*()
	Slide 84: execve()
	Slide 85: Exec Visualization
	Slide 86: Aside: Exiting a Process
	Slide 87: Exec Demo
	Slide 88: Any questions so far?
	Slide 89: Any questions so far?

