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Poll: how are you?

❖ How is penn-parser going?

▪ I haven’t started

▪ I have read the spec

▪ I’ve setup the container

▪ I’ve started writing code

▪ I’ve started writing code and I am pretty sure
I understand what is going on

▪ I’m done!
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Administrivia

❖ Project 0 penn-parser:

▪ “due” Tuesday Jan 30

▪ Actual due date: submit with penn-shredder, but you need to 
finish it before penn-shredder will work anyways.

▪ Your first C programming assignment

❖ Project 1 penn-shredder:

▪ Due Friday Feb 02nd

▪ Release after lecture today

▪ You need penn-parser to complete it

▪ Is not much more once you have implemented penn-parser

▪ You will have everything you need to complete it after

▪ Demo at end of lecture
3
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Administrivia

❖ No check-in due next week

▪ I think it makes sense that you are busy with project0 and project 
1, no check-in

❖ First “recitation”

▪ Tentatively Monday next week, waiting on room reservation

▪ Covers topics that should help with projects, and then have open 
OH afterwards.

❖ Pre-semester survey:

▪ “due” wed Jan 31

▪ Just a short survey

4
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❖ How many 
numbers are 
printed? What 
number(s) get 
printed from 
each process?

5
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int global_num = 1;

void function() {

  global_num++;

  printf("%d\n", global_num);

}

int main() {

  pid_t id = fork();

 if (id == 0) {

    function();

    id = fork();

    if (id == 0) {

      function();

    }

    return EXIT_SUCCESS;

  }

  global_num += 2;

  printf("%d\n", global_num);

  return EXIT_SUCCESS;

}
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❖ How many times is ":)" printed?

6

pollev.com/tqm

int main(int argc, char* argv[]) {

  for (int i = 0; i < 4; i++) {

    fork();

  }

  printf(":)\n");

  return EXIT_SUCCESS;

}
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

7
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exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the 
specified program can run

8
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execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of 
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is 
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

9

int execve(const char *file,

    char* const argv[]

    char* const envp[]);
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Exec Visualization

❖ Exec takes a process and discards or “resets” most of it
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OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following 
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following 
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers
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Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

11
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Any questions so far?

12
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int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

broken_autograder.c
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Any questions so far?

13

pollev.com/tqm

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()
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Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume 
functions don’t fail

14

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"/bin/echo",

                    "hello",

                    NULL};

    execve(argv[0], argv, envp);

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    return EXIT_SUCCESS;

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}

pollev.com/tqm
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

15
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From a previous poll:

16

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

broken_autograder.c

ALWAYS
     ^
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“waiting” for updates on a Process

❖

▪ Calling process waits for any child process to change status

• Also cleans up the child process if it was a zombie/terminated

▪ Gets the exit status of child process through output parameter 
wstatus

▪ Returns process ID of child who was waited for or -1 on error

17

pid_t wait(int *wstatus);
Usual change in status 

is to “terminated”
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Execution Blocking 

❖ When a process calls wait() and there is a process to 
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for 
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

18
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Fixed code from broken_autograder.c

19

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  wait(); // should error check, not enough slide space :(

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

} autograder.c



CIS 3800, Spring 2024L02:  Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

20

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits
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Poll: how are you?

❖ Can a child finish before parent calls wait?

21

discuss
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What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the 
child executed. 

▪ In the program, it is extremely likely this happens if the child is 
calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

22
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Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes 
that aren’t “completely done”

❖ Each process in this table has a process control block 
(PCB) to hold information about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status  (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

23
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Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run 
anymore

▪ still “exists”, has a PCB still, so that a parent can check its status 
one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all 
information related to it has been freed (No more PCB entry)

24
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Diagram: wait_example.c

25

Process Table

User Processes

OS
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Diagram: wait_example.c

26

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…
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Diagram: wait_example.c

27

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…
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Diagram: wait_example.c

28

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)



CIS 3800, Spring 2024L02:  Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)



CIS 3800, Spring 2024L02:  Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…
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Diagram: wait_example.c
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User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()
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Diagram: wait_example.c

38

User Processes

OS

Process Table

./wait_example 

Is reaped by its 

parent. In our 

example, that is the 

terminal shell
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Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and 
blocks till those seconds have passed

39
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More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter 
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

40

pid_t waitpid(pid_t pid, int *wstatus, 

  int options);
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wait() status

❖ status output from wait() can be passed to a macro 
to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ See example in state_check.c

41

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

42
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Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B.   ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

44

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm
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Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient  for a useful system: 
Difficult to react to changes in system state 

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts 

• Change in control flow in response to a system event 
(i.e.,  change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software 

What we will be looking at today
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Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in 
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next
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0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a 
unique number k

❖ k = index into table 
(a.k.a. interrupt vector)

❖ Handler k is called each time 
interrupt k occurs

Interrupt
Table

Code for  
interrupt handler 0

Code for 
interrupt handler 1

Code for
interrupt handler 2

Code for 
interrupt handler n-1

...

Interrupt
Numbres
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Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk
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Synchronous Interrupts
❖ Caused by events that occur as a result of executing an 

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable 

• Examples: page faults (recoverable), protection faults 
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t 

fully agreed upon. Many people may use these 

interchangeably
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

51
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Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number 
associated with it, and a way it is handled

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

52

Default: ignore

Default: terminate the process

Default: terminate & core dump
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signal()

❖ You can change how a certain signal is handled

❖ signal

❖ Uses the sighandler_t type: a function pointer

▪ D

❖ Returns previous handler for that signal
▪ SIG_ERR when there is an error

❖ Pass in SIG_IGN to ignore the signal

❖ Pass in SIG_DFL for default behaviour

❖ Some signals like SIG_KILL and SIG_STOP can’t be 
handled differently

53

sighandler_t signal(int signum,

   sighandler_t handler);

typedef void (*sighandler_t)(int);
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Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number 
that raised this handler. Return type is void

❖ Is automatically called when your process is interrupted 
by a signal

❖ Can manipulate global state

❖ If you change signal behaviour within the handler, it will 
be undone when you return

❖ Signal handlers set by a process will be retained in any 
children that are created

54

typedef void (*sighandler_t)(int);
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Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command 
in the terminal, use ps –u to fine the process id

55
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alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after 
the specified number of seconds

❖ Default SIGALRM behaviour: terminate the process

❖ How to cancel alarms?

▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR EXTRA CREDIT: what happens if the child 
process calls alarm? … and default handles it? 57

unsigned int alarm(unsigned int seconds);
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Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

58

discuss

int main(int argc, char* argv[]) {

  alarm(15U);

  return EXIT_SUCCESS;

}
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Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state
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kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

❖ Put this at the top of your  penn-shredder.c file (before
#includes) to use kill()

60

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

#define _POSIX_C_SOURCE 1
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Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not 
block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG
was passed in

61

pid_t waitpid(pid_t pid, int *wstatus, 

  int options);
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Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5 
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN 
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm()
TOGETHER CAN CAUSE ISSUES
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SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is 
received, and by default ignored.

❖ You can write a signal handler for SIGCHLD, and use that 
to help handle children update statuses: allowing the 
parent process to do other things instead of calling 
wait() or waitpid()

❖ Relevant for proj2: penn-shell
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo
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