
CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Processes (cont.): exec, wait, signal
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Poll: how are you?

❖ How is penn-parser going?

▪ I haven’t started

▪ I have read the spec

▪ I’ve setup the container

▪ I’ve started writing code

▪ I’ve started writing code and I am pretty sure
I understand what is going on

▪ I’m done!

2

pollev.com/tqm

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Administrivia

❖ Project 0 penn-parser:

▪ “due” Tuesday Jan 30

▪ Actual due date: submit with penn-shredder, but you need to
finish it before penn-shredder will work anyways.

▪ Your first C programming assignment

❖ Project 1 penn-shredder:

▪ Due Friday Feb 02nd

▪ Release after lecture today

▪ You need penn-parser to complete it

▪ Is not much more once you have implemented penn-parser

▪ You will have everything you need to complete it after

▪ Demo at end of lecture
3

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Administrivia

❖ No check-in due next week

▪ I think it makes sense that you are busy with project0 and project
1, no check-in

❖ First “recitation”

▪ Tentatively Monday next week, waiting on room reservation

▪ Covers topics that should help with projects, and then have open
OH afterwards.

❖ Pre-semester survey:

▪ “due” wed Jan 31

▪ Just a short survey

4

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

❖ How many
numbers are
printed? What
number(s) get
printed from
each process?

5

pollev.com/tqm

int global_num = 1;

void function() {

 global_num++;

 printf("%d\n", global_num);

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 printf("%d\n", global_num);

 return EXIT_SUCCESS;

}

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

❖ How many times is ":)" printed?

6

pollev.com/tqm

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 printf(":)\n");

 return EXIT_SUCCESS;

}

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

7

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

8

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

9

int execve(const char *file,

 char* const argv[]

 char* const envp[]);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

10

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

11

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Any questions so far?

12

pollev.com/tqm

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

broken_autograder.c

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Any questions so far?

13

pollev.com/tqm

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume
functions don’t fail

14

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"/bin/echo",

 "hello",

 NULL};

 execve(argv[0], argv, envp);

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

15

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

From a previous poll:

16

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

broken_autograder.c

ALWAYS
 ^

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

“waiting” for updates on a Process

❖

▪ Calling process waits for any child process to change status

• Also cleans up the child process if it was a zombie/terminated

▪ Gets the exit status of child process through output parameter
wstatus

▪ Returns process ID of child who was waited for or -1 on error

17

pid_t wait(int *wstatus);
Usual change in status

is to “terminated”

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Execution Blocking

❖ When a process calls wait() and there is a process to
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

18

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Fixed code from broken_autograder.c

19

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 wait(); // should error check, not enough slide space :(

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

} autograder.c

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

20

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Poll: how are you?

❖ Can a child finish before parent calls wait?

21

discuss

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the
child executed.

▪ In the program, it is extremely likely this happens if the child is
calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

22

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes
that aren’t “completely done”

❖ Each process in this table has a process control block
(PCB) to hold information about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

23

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run
anymore

▪ still “exists”, has a PCB still, so that a parent can check its status
one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all
information related to it has been freed (No more PCB entry)

24

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

25

Process Table

User Processes

OS

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

26

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

27

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

28

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

29

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

30

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

31

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

32

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

33

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

34

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

35

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

36

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

37

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Diagram: wait_example.c

38

User Processes

OS

Process Table

./wait_example

Is reaped by its

parent. In our

example, that is the

terminal shell

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and
blocks till those seconds have passed

39

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

40

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro
to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ See example in state_check.c

41

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

42

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B. ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

44

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

What we will be looking at today

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a
unique number k

❖ k = index into table
(a.k.a. interrupt vector)

❖ Handler k is called each time
interrupt k occurs

Interrupt
Table

Code for
interrupt handler 0

Code for
interrupt handler 1

Code for
interrupt handler 2

Code for
interrupt handler n-1

...

Interrupt
Numbres

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Synchronous Interrupts
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable

• Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t

fully agreed upon. Many people may use these

interchangeably

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

51

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number
associated with it, and a way it is handled

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

52

Default: ignore

Default: terminate the process

Default: terminate & core dump

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

signal()

❖ You can change how a certain signal is handled

❖ signal

❖ Uses the sighandler_t type: a function pointer

▪ D

❖ Returns previous handler for that signal
▪ SIG_ERR when there is an error

❖ Pass in SIG_IGN to ignore the signal

❖ Pass in SIG_DFL for default behaviour

❖ Some signals like SIG_KILL and SIG_STOP can’t be
handled differently

53

sighandler_t signal(int signum,

 sighandler_t handler);

typedef void (*sighandler_t)(int);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number
that raised this handler. Return type is void

❖ Is automatically called when your process is interrupted
by a signal

❖ Can manipulate global state

❖ If you change signal behaviour within the handler, it will
be undone when you return

❖ Signal handlers set by a process will be retained in any
children that are created

54

typedef void (*sighandler_t)(int);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command
in the terminal, use ps –u to fine the process id

55

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after
the specified number of seconds

❖ Default SIGALRM behaviour: terminate the process

❖ How to cancel alarms?

▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR EXTRA CREDIT: what happens if the child
process calls alarm? … and default handles it? 57

unsigned int alarm(unsigned int seconds);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

58

discuss

int main(int argc, char* argv[]) {

 alarm(15U);

 return EXIT_SUCCESS;

}

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

59

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

❖ Put this at the top of your penn-shredder.c file (before
#includes) to use kill()

60

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

#define _POSIX_C_SOURCE 1

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not
block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG
was passed in

61

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm()
TOGETHER CAN CAUSE ISSUES

62

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is
received, and by default ignored.

❖ You can write a signal handler for SIGCHLD, and use that
to help handle children update statuses: allowing the
parent process to do other things instead of calling
wait() or waitpid()

❖ Relevant for proj2: penn-shell

63

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

64

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated

CIS 3800, Spring 2024L02: Fork, Exec, Wait, Signal, Penn-ShredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

66

	Default Section
	Slide 1: Processes (cont.): exec, wait, signal Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5
	Slide 6
	Slide 7: Lecture Outline
	Slide 8: exec*()
	Slide 9: execve()
	Slide 10: Exec Visualization
	Slide 11: Exec Demo
	Slide 12: Any questions so far?
	Slide 13: Any questions so far?
	Slide 14: Poll: how are you?
	Slide 15: Lecture Outline
	Slide 16: From a previous poll:
	Slide 17: “waiting” for updates on a Process
	Slide 18: Execution Blocking
	Slide 19: Fixed code from broken_autograder.c
	Slide 20: Demo: wait_example
	Slide 21: Poll: how are you?
	Slide 22: What if the child finishes first?
	Slide 23: Process Tables & Process Control Blocks
	Slide 24: Zombie Process
	Slide 25: Diagram: wait_example.c
	Slide 26: Diagram: wait_example.c
	Slide 27: Diagram: wait_example.c
	Slide 28: Diagram: wait_example.c
	Slide 29: Diagram: wait_example.c
	Slide 30: Diagram: wait_example.c
	Slide 31: Diagram: wait_example.c
	Slide 32: Diagram: wait_example.c
	Slide 33: Diagram: wait_example.c
	Slide 34: Diagram: wait_example.c
	Slide 35: Diagram: wait_example.c
	Slide 36: Diagram: wait_example.c
	Slide 37: Diagram: wait_example.c
	Slide 38: Diagram: wait_example.c
	Slide 39: Demo: state_example
	Slide 40: More: waitpid()
	Slide 41: wait() status
	Slide 42: Lecture Outline
	Slide 43: Control Flow
	Slide 44
	Slide 45: Altering the Control Flow
	Slide 46: Exceptional Control Flow
	Slide 47: Interrupts
	Slide 48: Interrupt Tables
	Slide 49: Asynchronous Interrupts
	Slide 50: Synchronous Interrupts
	Slide 51: Lecture Outline
	Slide 52: Signals
	Slide 53: signal()
	Slide 54: Signal handlers
	Slide 55: Demo ctrlc.c
	Slide 57: alarm()
	Slide 58: Poll: how are you?
	Slide 59: Demo no_sleep.c
	Slide 60: kill()
	Slide 61: Non blocking wait w/ waitpid()
	Slide 62: Demo impatient.c
	Slide 63: SIGCHLD handler
	Slide 64: Lecture Outline
	Slide 65: Process State Lifetime
	Slide 66: Lecture Outline

