
CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

(waitpid) and More On Signals
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions regarding penn-parser or penn-shredder

2

pollev.com/tqm

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Administrivia

❖ Project 0 penn-parser:

▪ Autograder is up, due Friday @ 11:59pm

▪ Actual due date: submit with penn-shredder, but you need to
finish it before penn-shredder will work anyways.

▪ Your first C programming assignment

❖ Project 1 penn-shredder:

▪ Due Friday Feb 02nd

▪ You need penn-parser to complete it

▪ Is not much more once you have implemented penn-parser

▪ Should have everything you need, this lecture may help

3

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Administrivia

❖ There will be a check-in due next week

▪ Due before Tues @ 5pm

❖ First “recitation” was yesterday, there will be another
again next week

▪ Tentatively Monday next week, waiting on room reservation

▪ Covers topics that should help with projects, and then have open
OH afterwards.

❖ Pre-semester survey:

▪ “due” wed Jan 31 TOMORROW

▪ Just a short survey

▪ Please do it 4

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

5

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro
to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ See example in status_check.c

6

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

7

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not
block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG
was passed in

8

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

CPU Utilization

❖ When a process is in a blocked state, it will not be run by
the scheduler and thus will not use the CPU

❖ When analyzing performance, one thing people care
about is making maximal use of the CPU. The CPU is what
is executing our instructions.

▪ Avoiding wasting CPU cycles on things that don’t matter

▪ Make sure the CPU is running as much instructions (that matter)
as possible

9

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Any questions so far?

10

discuss

What does this code
print?

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Any questions so far?

11

If we change line 23 to
use WNOHANG, what is
printed? Which code is
likely better?

pollev.com/tqm

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Blocking

❖ Do we always want to block?

▪ In the simple cases, yes

▪ In more complex cases (like in penn-shell), it may not be desirable

❖ If we don’t block, that means we can make progress on
other tasks. If we had blocked, those other tasks are also
waiting on that task

▪ More on this later in the semester when we talk about threads

▪ This idea is related to asynchronous programming

12

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Busy Waiting

❖ Busy Waiting: when code repeatedly checks some
condition, waiting for the condition to be satisfied

▪ Sometimes called Spinning, like the phrase “spinning your wheels”

❖ We just did this before, see no_hang.c

❖ Demo: running no_hang and using the terminal
command top to see the CPU utilization

13

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

14

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Diagram: signals

15

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Diagram: signals

16

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CTRL + C

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Diagram: signals

17

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CTRL + C

Signals go through the OS

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

❖ Put this at the top of your penn-shredder.c file (before
#includes) to use kill()

18

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

#define _POSIX_C_SOURCE 1

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Diagram: signals between processes

19

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Diagram: signals between processes

20

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

When one process tries to
send a signal to another, it
goes through the OS

Good rule of thumb:
If a process wants to
interact with another
process, it does so through
the OS.

The OS tries to make sure
processes stay “safe” in
their interactions

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm()
TOGETHER CAN CAUSE ISSUES

21

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Signals can interrupt other signals

❖ See code demo: interrupt.c

▪ Handler registered for SIGALRM and SIGINT

▪ Once SIGALRM goes off, it continuously loops and prints

▪ SIGINT can be input and run its handler even if SIGALRM was
running its handler

22

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is
received, and by default ignored.

❖ You can write a signal handler for SIGCHLD, and use that
to help handle children update statuses: allowing the
parent process to do other things instead of calling
wait() or waitpid()

❖ Relevant for proj2: penn-shell

23

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

24

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Previously: Execution Blocking

❖ When a process calls wait() and there is a process to
wait on, the calling process blocks

❖ If a process blocks or is blocking it is not scheduled for
execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

❖ This happens frequently when a system call is made, that
calling process will block till the system call can be
completed.

❖ This is DIFFERENT than signal blocking
25

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Signal Blocking

❖ A process has some set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Blocked signals mean that the signal is temporarily paused from
being delivered, instead that signal is “delayed” until the process
eventually unblocks that signal

❖ Common mistake: thinking this is the same as calling
signal(SIG____, SIG_IGN);

This function call marks the signal as ignored, which
means a signal delivered during this time is completely
ignored, never delivered later.

❖ REMINDER: Different from a process “blocking”
26

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

…

Aside: a way to implement a set in C

❖ If we have a fixed number of items that can possibly be in
the set, then we can use a bitset

❖ Have at least N bits, each item corresponding to a single
bit.

▪ Each items assigned bit can either be a 0 or a 1, 0 to indicate
absence in the set, 1 to indicate presence in the set

❖ Example:

27

… 0 1 0 1 1 1 0 0 1

Item “A”Item “B”

B is not in the set A is in the set

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ If we have 39 signals, how many bits do we need to have a
bitset to represent all signals? How many bytes?

28

pollev.com/tqm

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

❖ Sigemptyset

▪ Initializes a sigset_t to be empty

❖ sigaddset

▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

29

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;

if (sigemptyset(&mask) == -1) {

 // error

}

if (sigaddset(&mask, SIGINT) == -1) {

 // error

}

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ Three arguments, how do we use them?

❖ Look at the man page, how do we complete this code?

▪ man sigprocmask

30

int sigprocmask(int how, const sigset_t* set,

 sigset_t* oldset);

pollev.com/tqm

sigset_t mask;

if (sigemptyset(&mask) == -1) { // error }

if (sigaddset(&mask, SIGINT) == -1) { // error }

// how do we block SIGINT?

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Demo: delay_sigint.c

❖ Demo: delay_sigint.c

▪ blocks the signal SIGINT so that if CTRL + C is typed in the first 5
seconds, it doesn’t get processed till after the first 5 seconds of
the program running

▪ CTRL + C after the first 5 seconds works as normal

31

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

32

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Concurrent Processes

❖ Each process is a logical control flow.

❖ Two processes run concurrently (are concurrent) if
their flows overlap in time

❖ Otherwise, they are sequential

❖ Examples (running on single core):

▪ Concurrent: A & B, A & C

▪ Sequential: B & C
Process A Process B Process C

Time

Note how at

any specific moment

in time only one

process is running

Black line

indicates that the

process is running

during that time

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a

specific point in time. (Multiple instructions are

performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

35

Assuming

more than one

CPU/CORE

Process A Process B Process C

Time

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Sections

❖ There can be issues when one or more resources are
accessed concurrently that causes the program to be put
in an unexpected, invalid, or error state.

These sections of code where these accesses happen,
called critical sections, need to be protected from
concurrent accesses happening during it

❖ With concurrent processes accessing OS resources, the OS
will handle critical sections for us

❖ Even if we have one process, we can have signal handlers
execute at any time, leading to possible concurrent access
of memory, which is not default protected for us

36

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Remember this poll?

37

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

void handler(int signo) {

 list_push(list, 4.48);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

This code is broken. It
compiles, but it
doesn’t always do
what we want. Why?

▪ Assume we have
implemented a
linked list, and it
works

▪ Assume list is an
initialized global
linked list

pollev.com/tqm

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section

38

void handler(int signo) {

 list_push(list, 4.48);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

❖ This code is problematic since there is a critical section

Process A Process A
signal handler

Time list_push list_push

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

39

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time

list tail

...

value

next

3.14

NULL

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

40

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

41

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULL
Signal handler interrupts and

runs list_push while the process

is normally running list_push

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

42

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULL
Signal handler finishes, and we

return to running the main process

normally…

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

43

// assume this works

void list_push(list* this, float f) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) {

 exit(EXIT_FAILURE);

 }

 node->value = f;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULL
Signal handler finishes, and we

return to running the main process

normally

and we end up in an invalid

linked list state…

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ How can we fix this
code?

44

pollev.com/tqm

// assume this works

void list_push(list* this, float to_push) {

 Node* node = malloc(sizeof(Node));

 if (node == NULL) exit(EXIT_FAILURE);

 node->value = to_push;

 node->next = NULL;

 this->tail->next = node;

 this->tail = node;

}

void handler(int signo) {

 list_push(list, 4.48);

}

int main(int argc, char* argv[]) {

 signal(SIGINT, handler);

 float f;

 while(list_size(list) < 20) {

 read_float(stdin, &f);

 list_push(list, f);

 }

 // omitted: do stuff with list

}

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Signal Safety

❖ From man 7 signal-safety

▪ To avoid problems with unsafe functions, there are two

possible choices:

• (a) Ensure that (1) the signal handler calls only async-

signal- safe functions, and (2) the signal handler itself is

reentrant with respect to global variables in the main

program.

– Prefer this when possible

• (b) Block signal delivery in the main program when calling

functions that are unsafe or operating on global data that

is also accessed by the signal handler.

– Notably: printf, malloc, free, and many functions are not signal safe

– We can do this with sigprocmask, but (a) is preferred when possible

▪ Read more by typing `man 7 signal-safety` into the
terminal or google 45

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

46

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

sigsuspend()

❖ Instead of busy waiting and wasting CPU cycles (that c an
be used by other processes), we can block/suspend
process execution instead

❖ d

▪ Temporarily replaces process mask with specified one and
suspends execution till a signal that is not blocked is delivered.

▪ If signal is caught by a handler, then after handler code will return
from sigsuspend and the process signal mask will be restored

❖ Demo: suspend_sigint.c

▪ Compare to previous code: delay_sigint.c

▪ Less CPU resources used ☺ 47

int sigsuspend(const sigset_t* mask);

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

volatile sig_atomic_t

❖ If you need to communicate with a signal handler, we
have been using global variables...

▪ Modifying global variables is generally unsafe in signals.

❖ In “real world” code if you want to modify a signal
handler, you should use global variable type: volatile
sig_atomic_t
▪ voltaile sig_atomic_t is an integer type

❖ We will not enforce this in these projects, but we felt like
it was worth letting yo know

48

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ Sigsuspend

❖ Process diagram updated

49

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Stopped Jobs

❖ Processes can be in a state slightly different than being
blocked. // This is relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not
run on the CPU until it is resumed by the SIGCONT signal

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

50

CIS 3800, Spring 2024L03: signalsUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGSTOP
(ctrl + Z)

SIGCONT
received

	Default Section
	Slide 1: (waitpid) and More On Signals Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: wait() status
	Slide 7: More: waitpid()
	Slide 8: Non blocking wait w/ waitpid()
	Slide 9: CPU Utilization
	Slide 10: Any questions so far?
	Slide 11: Any questions so far?
	Slide 12: Blocking
	Slide 13: Busy Waiting
	Slide 14: Lecture Outline
	Slide 15: Diagram: signals
	Slide 16: Diagram: signals
	Slide 17: Diagram: signals
	Slide 18: kill()
	Slide 19: Diagram: signals between processes
	Slide 20: Diagram: signals between processes
	Slide 21: Demo impatient.c
	Slide 22: Signals can interrupt other signals
	Slide 23: SIGCHLD handler
	Slide 24: Lecture Outline
	Slide 25: Previously: Execution Blocking
	Slide 26: Signal Blocking
	Slide 27: Aside: a way to implement a set in C
	Slide 28: Poll: how are you?
	Slide 29: sigset_t
	Slide 30: sigprocmask()
	Slide 31: Demo: delay_sigint.c
	Slide 32: Lecture Outline
	Slide 33: Concurrent Processes
	Slide 35: Parallel Processes
	Slide 36: Critical Sections
	Slide 37: Remember this poll?
	Slide 38: Critical Section
	Slide 39: Critical Section Walkthrough
	Slide 40: Critical Section Walkthrough
	Slide 41: Critical Section Walkthrough
	Slide 42: Critical Section Walkthrough
	Slide 43: Critical Section Walkthrough
	Slide 44: Poll: how are you?
	Slide 45: Signal Safety
	Slide 46: Lecture Outline
	Slide 47: sigsuspend()
	Slide 48: volatile sig_atomic_t
	Slide 49: Lecture Outline
	Slide 50: Stopped Jobs
	Slide 51: Process State Lifetime

