
CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups & Terminal Control
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Poll: how are you?

❖ How was parser and shredder?
Are you excited for more C and penn-shell? ☺

2

pollev.com/tqm

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Administrivia

❖ Peer Evaluation: out now, due Saturday 2/10 @ 11:59 pm

▪ Please do it, it shouldn’t take long

▪ Mostly completion, don’t just say “this is fine” for everything

❖ Penn-shell is out!

▪ Milestone is due a week from tomorrow (2/14 @ 11:59pm)

▪ Full thing is due a week and half later (2/23 @ 11:59 pm)

▪ Demo in second half of this class

▪ Done in partners

▪ Should have everything you need to complete the assignment in
this class

3

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Administrivia

❖ Recitation

▪ On Monday!

▪ A few tips about dealing with pipe() and the rest will be office
hours to help finish milestone 1

❖ Partners have been randomly assigned!

▪ If you need to contact your partner, let us know and we can email
both of you

❖ Check-in Quiz due before next lecture

▪ Will release soon

4

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the
top of your file before you #include anything

▪ This *should* get
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
should still accept it

5

#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

6

pollev.com/tqm

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

7

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups

❖ Processes are associated together into Process Groups.

▪ A process always is in a process group

❖ Allows for convenient process & signal management:

▪ If ctrl + C (SIGINT) is sent to a process via the keyboard, it is also
sent to all processes within its group

❖ When we create a process with fork(), the child belongs to
the same process group as the parent

❖ Shell has the notion of a job: “commands” started
interactively. All processes in a job are in the same group

❖ Relevant for penn-shell 8

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Group ID

❖ The process group ID is equal to a process ID

▪ The process ID of the first process to exist in the group

▪ If a process group “leader” terminates, can its process ID be
reused by another process? Even if the old group is still going?

▪ Answer: no, that process ID will be reserved until the group is
done

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Sets page group id of the specified process to the new
value

▪ Only works if pgid specifies an existing process group

▪ Or if pgid == pid, creates a new process group of that id

9

int setpgid(pid_t pid, pid_t pgid);

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Group ID

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Gets the process group id of the specified process

❖ If 0 is passed in, get the group ID of the calling process

❖ -1 returned on error

10

pid_t getpgid(pid_t pid);

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

CTRL +C, same group

11

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

CTRL +C, same group

12

User Processes

OS

./example

 pid = 100

CTRL + C

/bin/sleep

 pid = 101

pgid = 100

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

CTRL +C, same group

13

User Processes

OS

./example

 pid = 100

CTRL + C

/bin/sleep

 pid = 101

pgid = 100

SIGINT is sent to every
Process in the process
group

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

GAP SLIDE: MOVING ON TO DIFFERENT
EXAMPLE

14

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

CTRL +C, different group

15

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

CTRL +C, different group

16

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CTRL + C

SIGINT is sent to every
Process in the process
group

Child is in a separate
group

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

GAP SLIDE: MOVING ON TO DIFFERENT
EXAMPLE

17

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups: utility

❖ Can pass in -PGID (negative PGID) to kill() and
waitpid()

❖ Doing so for kill() will send the signal to all processes
in the group

❖ Doing so for waitpid() will wait for any process in the
group

❖ You may find this useful for proj1: penn-shell

18

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Diagram: signals between process groups

19

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

Let's say we have the
parent process on the
left

a child process in its
own group on the right.

What if the parent forks
a second child and adds
it to the other child’s
group? (or the child calls
fork directly, but don’t
do this in penn-shell)

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Diagram: signals between process groups

20

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

Let's say we have the
parent process on the
left

a child process in its
own group on the right.

What if the parent forks
a second child and adds
it to the other child’s
group? (or the child calls
fork directly, but don’t
do this in penn-shell)

/bin/sleep

 pid = 102

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Diagram: signals between process groups

21

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(101, SIGINT)

Then it only goes to its
child

/bin/sleep

 pid = 102

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Diagram: signals between process groups

22

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(-101, SIGINT)

Then it goes to all
processes in the 101
group

/bin/sleep

 pid = 102

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: pgrpg_signals.c

❖ See code demo: pgrp_signals.c

▪ Handler registered for SIGINT in both child and parent

▪ Parent puts child in its own group

▪ CTRL + C is input -> parent signal handler is invoked -> parent
relays the signal to the child

▪ What happens if we don’t call kill in parent handler?

▪ What happens if we then don’t put child in its own group?

23

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

24

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

What if the child tried to use the terminal?

❖ Demo!
▪ Modify the pgrp_signals.c so that the child does “cat” (read

from stdin, echo it to stdout until EOF)

▪ it does not work?

25

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Sessions

❖ A Session is a collection of process groups

▪ A session can be attached to a controlling terminal

▪ Or not attached to any terminal (daemon’s)

❖ You can think of a session as mostly associated with a
“login” or instance of a terminal application. Each
login/terminal is a session

❖ Within a session (that has a controlling terminal) there are

▪ Background processes

▪ Foreground processes

26

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Foreground Process Groups

❖ Foreground process groups (i.e., Foreground Jobs) can
read from STDIN and the processes in that group receive
the signals from the keyboard (e.g., CTRL + C)

❖ A foreground group can make another group the
foreground with the function:

❖ Tcsetpgrp
▪ fd is a file descriptor associated with the terminal (stdin)

▪ Sets the process group specified by pgrp to be the foreground
process group

▪ -1 returned on error, 0 when successful

27

int tcsetpgrp(int fd, pid_t pgrp);

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Background Process

❖ If a background process tries to read from stdin, it gets
sent the signal SIGTTIN

❖ If a background process tries to take control of the
terminal with tcsetgpgrp, then the group gets sent
SIGTTOU, which will stop the process group

❖ Writing to stdout from the background is ok, but can be
configured so that background processes get SIGTTOU

28

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: tc.c

❖ See code demo: tc.c

▪ Fixed our process group code so that it can run cat ☺

▪ Parent can print to stdout even if has given away the terminal

▪ How can we make the parent take back the terminal control?

29

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: tc.c

❖ What is the intention of this code? Does it do what it
intends to do? How can we fix it?

30

pollev.com/tqm

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: tc_loop.c

❖ See code demo: tc_loop.c

▪ The code from the poll

▪ Let's try to fix it…

▪ How can we make the parent take back the terminal control?

31

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

32

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Stopped Jobs

❖ Processes can be in a state slightly different than being
blocked. // This is relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not
run on the CPU until it is resumed by the SIGCONT signal

▪ Other signals can still stop a program by default, like SIGTSTP
or SIGTTOU

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

33

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGTSTP
(ctrl + Z)

SIGCONT
received

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

35

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Background in the shell

❖ To start a background job in the shell (and in penn-shell)
run the command with a & at the end.
▪ sleep 10 &

❖ While a command is running in the background, we can
run other commands in the shell

❖ Can use the jobs command to see the status of the jobs
we have started

36

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Penn-shell

❖ Part of what you do in HW1 (after the milestone) is to
make a shell that manages process groups in the
foreground and background

❖ This means your code will have to handle multiple process
groups at once, keeping track of the state of all of them.

❖ Need to maintain a linked list of the current jobs to
handle job control

37

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"Normal" approach Pseudo Code

❖ Discuss: what does this do?

❖ Is there a flaw in this?
Not in correctness but
maybe

▪ Responsiveness

▪ Resource utilization

▪ etc.

38

int main(int argc, char* argv[]) {

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 waitpid(pid, &wstatus, 0);

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

 // re-prompt user

 }

}

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: "Normal"

❖ The “normal”: check background processes before re-
prompting the user

▪ may not be responsive to background processes finishing

▪ Consider we have many background processes then the user runs
sleep 1000000 in the foreground...

▪ those background processes will not be reaped until foreground
finishes

39

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"Polling" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

40

int main(int argc, char* argv[]) {

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 while (waitpid(pid, &wstatus, WNOHANG) == 0) {

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

 }

 // re-prompt user

 }

}

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: Polling

❖ Polling is a term used to describe when we check to see if
something is ready, but do not block if it is not ready

❖ This approach is more responsive than the previous one…

❖ but it busy waits… consuming CPU cycles…

41

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Aside: SIGCHLD

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is
terminated

▪ Is ignored by default

42

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"async" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

43

void handler(int signo) {

 for (pid_t p : background) {

 // check status of background

 waitpid(p, &wstatus, WNOHANG);

 // if there is an update,

 // need to update the lists…

 }

}

int main(int argc, char* argv[]) {

 signal(SIGCHLD, handler);

 while(...) {

 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 waitpid(pid, &wstatus, 0);

 // re-prompt user

 }

}

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: Async

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is
terminated

▪ Is ignored by default

❖ This allows us to respond quickly to the background
children terminating

❖ No busy waiting! Main process instead is mostly blocked
waiting on the foreground job

❖ Must use signal handlers and handle critical sections ;_;

❖ Handling this ASYNC is your extra credit
pass the normal autograder first PLEASE 44

CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Reminder: sigsuspend

❖ Another way to approach handling async is to use
sigsuspend()

▪ May be a little harder to reason about

▪ Don’t have to do much in the signal handler if this is the case!

45

	Default Section
	Slide 1: Process Groups & Terminal Control Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Penn-Shell Compatibility
	Slide 6: Poll: how are you?
	Slide 7: Lecture Outline
	Slide 8: Process Groups
	Slide 9: Process Group ID
	Slide 10: Process Group ID
	Slide 11: CTRL +C, same group
	Slide 12: CTRL +C, same group
	Slide 13: CTRL +C, same group
	Slide 14: GAP SLIDE: MOVING ON TO DIFFERENT EXAMPLE
	Slide 15: CTRL +C, different group
	Slide 16: CTRL +C, different group
	Slide 17: GAP SLIDE: MOVING ON TO DIFFERENT EXAMPLE
	Slide 18: Process Groups: utility
	Slide 19: Diagram: signals between process groups
	Slide 20: Diagram: signals between process groups
	Slide 21: Diagram: signals between process groups
	Slide 22: Diagram: signals between process groups
	Slide 23: Demo: pgrpg_signals.c
	Slide 24: Lecture Outline
	Slide 25: What if the child tried to use the terminal?
	Slide 26: Sessions
	Slide 27: Foreground Process Groups
	Slide 28: Background Process
	Slide 29: Demo: tc.c
	Slide 30: Demo: tc.c
	Slide 31: Demo: tc_loop.c
	Slide 32: Lecture Outline
	Slide 33: Stopped Jobs
	Slide 34: Process State Lifetime
	Slide 35: Lecture Outline
	Slide 36: Background in the shell
	Slide 37: Penn-shell
	Slide 38: "Normal" approach Pseudo Code
	Slide 39: Analysis: "Normal"
	Slide 40: "Polling" approach Pseudo Code
	Slide 41: Analysis: Polling
	Slide 42: Aside: SIGCHLD
	Slide 43: "async" approach Pseudo Code
	Slide 44: Analysis: Async
	Slide 45: Reminder: sigsuspend

