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Poll: how are you?

❖ How was parser and shredder?
Are you excited for more C and penn-shell? ☺
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Administrivia

❖ Peer Evaluation: out now, due Saturday 2/10 @ 11:59 pm 

▪ Please do it, it shouldn’t take long

▪ Mostly completion, don’t just say “this is fine” for everything

❖ Penn-shell is out!

▪ Milestone is due a week from tomorrow (2/14 @ 11:59pm)

▪ Full thing is due a week and half later (2/23 @ 11:59 pm)

▪ Demo in second half of this class

▪ Done in partners

▪ Should have everything you need to complete the assignment in 
this class
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Administrivia

❖ Recitation 

▪ On Monday!

▪ A few tips about dealing with pipe() and the rest will be office 
hours to help finish milestone 1

❖ Partners have been randomly assigned!

▪ If you need to contact your partner, let us know and we can email 
both of you

❖ Check-in Quiz due before next lecture

▪ Will release soon
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Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the 
top of your file before you #include anything

▪ This *should* get 
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
*should* still accept it
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#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD
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Process Groups

❖ Processes are associated together into Process Groups.

▪ A process always is in a process group

❖ Allows for convenient process & signal management:

▪ If ctrl + C (SIGINT) is sent to a process via the keyboard, it is also 
sent to all processes within its group

❖ When we create a process with fork(), the child belongs to 
the same process group as the parent

❖ Shell has the notion of a job: “commands” started 
interactively. All processes in a job are in the same group

❖ Relevant for penn-shell 8
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Process Group ID

❖ The process group ID is equal to a process ID

▪ The process ID of the first process to exist in the group

▪ If a process group “leader” terminates, can its process ID be 
reused by another process? Even if the old group is still going?

▪ Answer: no, that process ID will be reserved until the group is 
done 

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Sets page group id of the specified process to the new 
value

▪ Only works if pgid specifies an existing process group

▪ Or if pgid == pid, creates a new process group of that id
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int setpgid(pid_t pid, pid_t pgid);
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Process Group ID

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Gets the process group id of the specified process

❖ If 0 is passed in, get the group ID of the calling process

❖ -1 returned on error
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pid_t getpgid(pid_t pid);
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CTRL +C, same group 
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100
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CTRL +C, same group 
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User Processes

OS

./example

  pid = 100

CTRL + C

/bin/sleep

  pid = 101

pgid = 100
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CTRL +C, same group 
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User Processes

OS

./example

  pid = 100

CTRL + C

/bin/sleep

  pid = 101

pgid = 100

SIGINT is sent to every
Process in the process 
group
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GAP SLIDE: MOVING ON TO DIFFERENT 
EXAMPLE
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CTRL +C, different group 
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100 pgid = 101
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CTRL +C, different group 
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100 pgid = 101

CTRL + C

SIGINT is sent to every
Process in the process 
group

Child is in a separate
group
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GAP SLIDE: MOVING ON TO DIFFERENT 
EXAMPLE
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Process Groups: utility

❖ Can pass in -PGID (negative PGID) to kill() and 
waitpid()

❖ Doing so for kill() will send the signal to all processes 
in the group

❖ Doing so for waitpid() will wait for any process in the 
group

❖ You may find this useful for proj1: penn-shell

18
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Diagram: signals between process groups
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100 pgid = 101

Let's say we have the 
parent process on the 
left

a child process in its 
own group on the right.

What if the parent forks 
a second child and adds 
it to the other child’s 
group? (or the child calls 
fork directly, but don’t 
do this in penn-shell)
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Diagram: signals between process groups
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100
pgid = 101

Let's say we have the 
parent process on the 
left

a child process in its 
own group on the right.

What if the parent forks 
a second child and adds 
it to the other child’s 
group? (or the child calls 
fork directly, but don’t 
do this in penn-shell)

/bin/sleep

  pid = 102
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Diagram: signals between process groups
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(101, SIGINT)

Then it only goes to its
child

/bin/sleep

  pid = 102
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Diagram: signals between process groups
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User Processes

OS

./example

  pid = 100
/bin/sleep

  pid = 101

pgid = 100
pgid = 101

If the parent calls
kill(-101, SIGINT)

Then it goes to all 
processes in the 101 
group

/bin/sleep

  pid = 102
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Demo: pgrpg_signals.c

❖ See code demo: pgrp_signals.c

▪ Handler registered for SIGINT in both child and parent

▪ Parent puts child in its own group

▪ CTRL + C  is input -> parent signal handler is invoked -> parent 
relays the signal to the child

▪ What happens if we don’t call kill in parent handler?

▪ What happens if we then don’t put child in its own group?

23
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Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD
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What if the child tried to use the terminal?

❖ Demo!
▪ Modify the pgrp_signals.c so that the child does “cat” (read 

from stdin, echo it to stdout until EOF)

▪ it does not work?

25



CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Sessions

❖ A Session is a collection of process groups

▪ A session can be attached to a controlling terminal

▪ Or not attached to any terminal (daemon’s)

❖ You can think of a session as mostly associated with a 
“login” or instance of a terminal application. Each 
login/terminal is a session

❖ Within a session (that has a controlling terminal) there are

▪ Background processes

▪ Foreground processes

26
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Foreground Process Groups 

❖ Foreground process groups (i.e., Foreground Jobs) can 
read from STDIN and the processes in that group receive 
the signals from the keyboard (e.g., CTRL + C)

❖ A foreground group can make another group the 
foreground with the function:

❖ Tcsetpgrp
▪ fd is a file descriptor associated with the terminal (stdin)

▪ Sets the process group specified by pgrp to be the foreground 
process group

▪ -1 returned on error, 0 when successful

27

int tcsetpgrp(int fd, pid_t pgrp);



CIS 3800, Spring 2024L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Background Process

❖ If a background process tries to read from stdin, it gets 
sent the signal SIGTTIN

❖ If a background process tries to take control of the 
terminal with tcsetgpgrp, then the group gets sent 
SIGTTOU, which will stop the process group

❖ Writing to stdout from the background is ok, but can be 
configured so that background processes get SIGTTOU

28
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Demo: tc.c

❖ See code demo: tc.c

▪ Fixed our process group code so that it can run cat ☺

▪ Parent can print to stdout even if has given away the terminal

▪ How can we make the parent take back the terminal control?

29
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Demo: tc.c

❖ What is the intention of this code? Does it do what it 
intends to do? How can we fix it?

30
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Demo: tc_loop.c

❖ See code demo: tc_loop.c

▪ The code from the poll

▪ Let's try to fix it…

▪ How can we make the parent take back the terminal control?

31
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Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD
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Stopped Jobs

❖ Processes can be in a state slightly different than being 
blocked. // This is relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not 
run on the CPU until it is resumed by the SIGCONT signal

▪ Other signals can still stop a program by default, like  SIGTSTP 
or  SIGTTOU

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

33
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGTSTP
(ctrl + Z)

SIGCONT
received
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Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD
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Background in the shell

❖ To start a background job in the shell (and in penn-shell) 
run the command with a & at the end.
▪ sleep 10 &

❖ While a command is running in the background, we can 
run other commands in the shell

❖ Can use the jobs command to see the status of the jobs 
we have started

36
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Penn-shell 

❖ Part of what you do in HW1 (after the milestone) is to 
make a shell that manages process groups in the 
foreground and background

❖ This means your code will have to handle multiple process 
groups at once, keeping track of the state of all of them. 

❖ Need to maintain a linked list of the current jobs to 
handle job control

37
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"Normal" approach Pseudo Code

❖ Discuss: what does this do?

❖ Is there a flaw in this? 
Not in correctness but
maybe

▪ Responsiveness

▪ Resource utilization

▪ etc.

38

int main(int argc, char* argv[]) {

  while(...) {

    printf(PROMPT);

    getline(&user_input);

    pid = fork_exec(user_input);

    waitpid(pid, &wstatus, 0);

    for (pid_t p : background) {

       // check status of background

       waitpid(p, &wstatus, WNOHANG);

       // if there is an update,

       // need to update the lists…

    }

    // re-prompt user

  }

}
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Analysis: "Normal"

❖ The “normal”: check background processes before re-
prompting the user

▪ may not be responsive to background processes finishing

▪ Consider we have many background processes then the user runs
sleep 1000000 in the foreground...

▪ those background processes will not be reaped until foreground 
finishes

39
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"Polling" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt? 

40

int main(int argc, char* argv[]) {

  while(...) {

    printf(PROMPT);

    getline(&user_input);

    pid = fork_exec(user_input);

    while (waitpid(pid, &wstatus, WNOHANG) == 0) {

      for (pid_t p : background) {

        // check status of background

        waitpid(p, &wstatus, WNOHANG);

        // if there is an update,

        // need to update the lists…

      }

    }

    // re-prompt user

  }

}
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Analysis: Polling

❖ Polling is a term used to describe when we check to see if 
something is ready, but do not block if it is not ready

❖ This approach is more responsive than the previous one…

❖ but it busy waits… consuming CPU cycles… 

41
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Aside: SIGCHLD

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is 
terminated

▪ Is ignored by default

42
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"async" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

43

void handler(int signo) {

  for (pid_t p : background) {

    // check status of background

    waitpid(p, &wstatus, WNOHANG);

    // if there is an update,

    // need to update the lists…

  }

}

int main(int argc, char* argv[]) {

  signal(SIGCHLD, handler);

  while(...) {

    printf(PROMPT);

    getline(&user_input);

    pid = fork_exec(user_input);

    waitpid(pid, &wstatus, 0);

    // re-prompt user

  }

}
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Analysis: Async

❖ This approach registers SIGCHLD as a handler, SIGCHLD
is a signal that is sent when a child process stops or is 
terminated

▪ Is ignored by default

❖ This allows us to respond quickly to the background 
children terminating

❖ No busy waiting! Main process instead is mostly blocked 
waiting on the foreground job

❖ Must use signal handlers and handle critical sections ;_;

❖ Handling this ASYNC is your extra credit
pass the normal autograder first PLEASE 44
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Reminder: sigsuspend

❖ Another way to approach handling async is to use 
sigsuspend()

▪ May be a little harder to reason about

▪ Don’t have to do much in the signal handler if this is the case!

45
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