
CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

File System Intro
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Poll: how are you?

❖ How is milestone 1 looking?

2

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Administrivia

❖ Penn-shell is out!

▪ Milestone is due a week from tomorrow (2/14 @ 11:59pm)

▪ Full thing is due a week and half later (2/23 @ 11:59 pm)

▪ Demo in second half of this class

▪ Done in partners

▪ Should have everything you need to complete the assignment in
this class

▪ Please add your partner to the gradescope submission if you can.

3

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Administrivia

❖ Recitation

▪ On Monday!

▪ A few tips about dealing with penn-shell signals and such

❖ Partners have been randomly assigned!

▪ If you need to contact your partner, let us know and we can email
both of you

❖ Midterm booked:

▪ 5:15 - 7:15 pm in Meyerson B1

▪ Thursday 2/29 (the Thursday before break)

▪ Let me know if you conflicts

4

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the
top of your file before you #include anything

▪ This *should* get
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
should still accept it

5

#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Poll: how are you?

❖ How is the milestone going?

6

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Lecture Outline

❖ Intro to File System

▪ User Perspective

▪ Blocks

❖ Disk Allocation

▪ Contiguous

▪ Linked List

7

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Files

❖ You have interacted with files before.

❖ Files have names to identify them e.g. "Hello.txt"

❖ Files can be opened, read, written to, saved, deleted, etc..

❖ A file can store image data, programs, text, etc.

❖ Files can also be called non-volatile storage

▪ This data persists when the computer is powered off, as long as
the data is actually written to the file

▪ Data that is in memory is volatile. In other words, it is lost if the
power goes out.

8

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Directories

❖ A directory is a special type of file that contains a list of
other files (and directories) that are “inside” of it

❖ A directory is also named

❖ For most cases, we can use the word Directory and Folder
interchangeably

9

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Hierarchical File System

❖ Files on a computer are structured as a Hierarchical File
System

❖ Directories can contain other Directories

▪ Subdirectory is used to describe a directory contained in another

▪ Parent and Child are often
used to describe the
relationship between a
subdirectory and the
directory it is in.

▪ With one directory being
the “overall root” or
“overall parent”

10

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

File System: User Level STD API

❖ C stdio API: core functionalities

▪ fopen

▪ D

▪ Fwrite

▪ Fclose

❖ These core functionality of these functions should be self-
explanatory. If you need to use these, use man pages to
lookup the exact details

11

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

int fclose(FILE *stream);

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

File System: User Level STD API again

❖ C stdio API: core functionalities

▪ fopen

▪ D

▪ Fwrite

▪ Fclose

❖ In addition to the above, we also have another common
feature: moving to an arbitrary position in the file

12

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,

 size_t nmemb, FILE* stream);

int fclose(FILE *stream);

int fseek(FILE *stream, long offset, int whence);

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

13

A N A R C H Y i s a w o r d w h

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

14

A N A R C H Y i s a w o r d w h

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

15

A N A R C H Y i s a w o r d w h

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” of
bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about
files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

❖ This is not just a C thing; this is probably what you have
done in Java and other languages.

16

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

File System

❖ File System: A system composed of algorithms and data
structures for how data is stored, organized & retrieved
from a storage medium.

▪ E.g. how the operating system organizes the physical medium
(Hard Disk, SSD, Tape, Floppy Disk, etc) to make the
interface/abstraction we saw in the previous slides

17

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

The File System Foundations

❖ So, we have this complicated system of:

▪ various files of different lengths

▪ Files that can be written, read, extended, shrunk, deleted,
copied…

▪ Directories that contain files and other directories which can
contain other directories etc.

• Directories can be of various sizes

▪ Files can have different permissions (executable, read, write)

▪ Files of the same name can exist in different directories

▪ We want to try and support all of this, and have it run relatively
fast

❖ What does the operating system get to implement this?

18

int the_filesystem[REALY_REALLY_BIG];

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Not quite just an array of ints..

❖ From the OS perspective, it has to create and manage a
file system with this

❖ This is not fully true

▪ The “unit” size of elements in the array is not an int (usually 4
bytes) but instead a block (usually 512 or 4096 bytes)

▪ The OS does not get to directly index into the array, it
invokes hardware that can read or write specific blocks.

19

int the_filesystem[REALY_REALLY_BIG];

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Storage Mediums Interface: Blocks

❖ A block is a fixed number of contiguous bytes

▪ Usually, 4096 bytes or 512 bytes

❖ Storage Mediums can be thought of as a giant collection
of blocks.

▪ The file system has to organize these blocks (and the bytes inside
of them) to make the abstractions we talked about. Otherwise,
there would just be data with no clear separation of files

❖ A block is the unit of work for a file system

▪ Read and write operations to storage mediums (e.g. disk) are
done in multiples of the block size

▪ The smallest space a file takes up on disk is 1 block
20

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ The stream model is very convenient for user level
programs, but hardware works in terms of blocks.

❖ The file system breaks files up into blocks so that it can be
stored into the storage hardware.

▪ When the operating system interfaces with hardware, it works in
terms of blocks.

▪ When the OS operates on a file, it reads/writes an entire block at
a time

▪ The user still sees the file as a stream abstraction, can work with
bytes instead of blocks

21

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ User perspective: A sequence of bytes

❖ More details: these bytes are broken up into a series of
logical blocks

22

A N A R C H Y i s a w o r d w h i c h c o m e

A N A R C H Y i s a w o r d w h i c h c o m e

0th Block

for this file

1st Block

for this file

2nd Block

for this file

3rd Block

for this file

Byte 0

Byte 1

Byte 2

These blocks are logically next to each other, but may not

be next to each other physically in hardware.

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Building up to a full filesystem

❖ Lets start with a simple abstraction:

▪ We have disk that contains many blocks

▪ We want to store a few files and just one block per file (so each
file is at max ~4096 bytes)

❖ How do we know where a certain file is on disk?

▪ One Directory, root directory

❖ How do we know which blocks are free?

▪ Bit map of what is free and what is not free

23

free free File D free File B free free File A free free File C File E

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Solution: Directories

❖ We can solve one of these problems with the introduction
of directories.

❖ A directory is essentially like a file

▪ We will store its data on disk inside of blocks (like a file)

❖ The directory content format is known to the file system.

▪ Contains a list of directory entries

▪ Each directory entry contains the name of the file, the first block
number of the file, and some other information

24

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Solution: Directories

❖ The directory content format is known to the file system.

▪ Contains a list of directory entries

▪ Each directory entry contains the name of the file, the first block
number of the file, and some other information

25

free free File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory:

File Name Block Number

A 7

B 4

C 10

D 2

E 11

Where does this directory go?
Where do we store its information?
How do we know where the directory is in disk?

Remember: a directory stores its
data in blocks in disk too

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Solution: Root Directory

❖ Solution: we have an overall root directory that we always
put in the same place (Block 1 or Block 0)

26

free Root
Dir

File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory:

File Name Block Number

A 7

B 4

C 10

D 2

E 11

How do we know which blocks are free?

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Bitmap

❖ We can have a bitmap (similar to a bitset) stored in disk to
keep track of which blocks are free and which ones are
not.

❖ If we have N blocks, then we need N bits (1 bit per block)
to keep track of this information. If a bit is 1 the
corresponding block is free, 0 means it is in use.

❖ It is also useful to stick this in the front of the disk, at a
fixed location

27

Bit-
map

Root
Dir

File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Expanding on our model

❖ What we have works, what happens if we want files that
are more than 1 block big?

❖ Let’s say File B wants to be two blocks long instead of 1
block long

❖ What is the simplest thing we can do?

28

Bit-
map

Root
Dir

File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation

❖ Solution: let B expand into the block next to it on disk. It is
a free block and we can take it

❖ Only other change we need to make is probably have each
directory entry also store the number of blocks in the file

❖ This way of allocating blocks to a file is called Contagious
allocation. Each file occupies a contiguous region of blocks

29

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation: Random Access

❖ What if wanted to read the second block of File B?

▪ How many blocks would we need to read from disk?

• Assume we have not read anything in to the OS yet

30

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation: Random Access

❖ What if wanted to read the second block of File B?

▪ How many blocks would we need to read from disk?

31

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

2 blocks, depends if we have already read the root directory.
If we haven’t 1 block to read the root directory, another to read block 5.
We can read block 5 directly, no need to read block 4.
We know the first block is 4 and the second block of the file would be right after it.

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Contiguous allocation: problems

❖ Let’s say File C wants to be two blocks long instead of 1
block long

▪ What do we do?

❖ What if instead File D wants to be 5 blocks long?

❖ If we wanted to extend the file but the next block is taken,
we either give up or have to rearrange other files in the
file system.

❖ Analysis: this doesn’t work very well for files that may
grow over time. There is fragmentation that can’t be used
unless we move files around, which takes a lot of time :/

32

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Do blocks need to be contiguous?

❖ Logically (from the user view) a file is contiguous.

❖ The user never directly interfaces with disk, the operating
system just has to provide the data in the blocks in order

❖ The operating system is maintaining the abstraction for
the user. The user asks for the 3rd block of a file, and the
operating system will figure out which physical block it is.

❖ Sort of similar to virtual vs physical address translation 33

File A B0 File A B1 File A B2 File A B3 File A B4Logical File:

Block 1 EMPTY Block 3 Block 2 Block 0 Block 4 EMPTY

PB 0 PB 1 PB 2 PB 3 PB 4 PB 5 PB 6

Physical Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List Allocation

❖ We can have each block reserve some bits at the end that
are pointers to the next block in the file,

▪ or a special value to mark that there is no “next block”

❖ NOTE: when we say “pointer” here, it is not the same as a
memory pointer. This is a “disk pointer”, meaning it refers
to a place in disk and NOT a place in memory

❖ Root directory still holds the first block number for a file
in that file’s file entry.

34

Bit-
map

Root
Dir

File D free File B Also
File B

File D
Blk 2

File A File C
Blk 2

free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List Allocation

❖ What if I want to grow File D by 2 blocks?

▪ Scan the bitmap to find which blocks are free

▪ Allocate the blocks and set up pointers to them

35

Bit-
map

Root
Dir

File D free File B Also
File B

File D
Blk 2

File A File C
Blk 2

free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Bit-
map

Root
Dir

File D File D
Blk 3

File B Also
File B

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List Allocation: Random Access

❖ Let’s say I wanted to read the 4th block of file D.
How many block reads would be needed? Why?

▪ You can assume we already know where the file begins (we have
already read the directory entry for the file)

36

Bit-
map

Root
Dir

File D File D
Blk 3

File B Also
File B

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List Allocation: Random Access

❖ Let’s say I wanted to read the 4th block of file D.
How many block reads would be needed? Why?

▪ You can assume we already know where the file begins (we have
already read the directory entry for the file)

❖ 4 block reads

❖ We need to read each block to find where the next block
is located.

37

Bit-
map

Root
Dir

File D File D
Blk 3

File B Also
File B

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Seek Time

❖ To seek in a file is to move to a different position in the
file. If we want to move from one place on the hardware
to another, that takes a VERY long time (relatively)

❖ HDD (Hard Disk Drives) consist of a spinning disk and an
arm that hovers over the disk to read data

❖ Video: https://yewtu.be/watch?v=p-JJp-oLx58

▪ Start at 6:48 ish

❖ Since this is a physical operation,
much slower (relatively) than
electronic operations

38

https://yewtu.be/watch?v=p-JJp-oLx58

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked Allocation Analysis

❖ Linked List Pros:

▪ Growing a file is more feasible

▪ Fragmentation issues are less present

❖ Linked List Cons:

▪ Reading can take a lots of seeks to different parts of disk.
Seeks take up time

▪ This con is big enough to warrant a different allocation scheme.
Computer science typically cares A LOT about how quick
something is

39

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List via FAT

❖ We can still have a linked-list “style” approach, we just
need a way to make looking up the blocks of a file quicker.
We don’t want to access disk so many times if we can
help it.

❖ What can we do instead of accessing disk?

▪ What if we could access memory instead?

40

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Memory Hierarchy

41

Files systems are really

really really slow compared

to accessing memory

I’ll talk about

caches later

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

FAT (File Allocation Table)

❖ Instead of this:

❖ We can instead store the pointers or “links” in a table in
memory to get…

42

Bit-
map

Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ This table is called the
File Allocation Table (FAT)

❖ This table is in memory
when it is running

❖ Table stored in disk
initially, loaded into
memory when computer
is booted.

❖ Replaces the bitmap

▪ Why can it do that?
pollev.com/tqm

FAT (File Allocation Table)

43

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

FAT Lookup

❖ Let’s say I wanted to read
the 4th block of file D.
How many block reads
would be needed? Why?

▪ You can assume we already
know where the file begins
(we have already read the
directory entry for the file)

44

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

FAT Lookup

❖ Let’s say I wanted to read
the 4th block of file D.
How many block reads
would be needed? Why?

▪ You can assume we already
know where the file begins
(we have already read the
directory entry for the file)

▪ 1 block read. We can follow
the links in memory

45

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

FAT Walkthrough

46

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Read the directory entry
for File D to see that it starts
at block 2

FAT Walkthrough

47

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#2 and the “next” says
where the next block is
(physical block 6)

FAT Walkthrough

48

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#6 and the “next” says
where the next block is
(physical block 3)

FAT Walkthrough

49

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#3 and the “next” says
where the next block is
(physical block 9)

FAT Walkthrough

50

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ The FAT entry for block 9
has a special value for “next”
to indicate it is the last block
in the file

FAT Walkthrough

51

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END
Disk:

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Linked List via FAT

❖ FAT is logically very similar as a linked list, we just store
the links somewhere else that can be conveniently stored
in memory

❖ Since the links are in memory, we can find the Nth block of
a file with much fewer disk accesses

❖ Disk accesses take a long time, so this is good ☺

52

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Expanding or shrinking files in FAT

❖ What if we want to extend a file in FAT?

❖ What steps do we need to take?

❖ Hint: FAT is in memory, what are the big differences
between Disk and Memory?

53

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

Expanding or shrinking files in FAT

❖ What if we want to extend a file in FAT?

❖ What steps do we need to take?

▪ Lookup a free block in the FAT, mark it as a last block

▪ Lookup the last block in the file, change its FAT entry to think the
newly allocated block is the new “last”

▪ …

▪ Write the FAT table to disk, memory is volatile storage

❖ Hint: FAT is in memory, what are the big differences
between Disk and Memory?

54

pollev.com/tqm

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

FAT is great ☺*

❖ FAT has allowed us to have non-contiguous blocks for a
file.

❖ At the same time, we only need one disk read to access
the Nth block of a file

❖ What could go wrong with this?

▪ FAT is really big and is in memory, so memory consumption goes
up

55

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

FAT size

❖ A FAT is similar to a bitmap

▪ A bitmap needs 1 bit per block

▪ A FAT needs ~16-bits per block

❖ At least we don’t need bitmap anymore!

❖ Grows a lot as the size of disk grows

▪ As the disk grows, there are more blocks in the disk. We need
more FAT entries, and each entry needs more bits. (To hold the
block number. # of bits for block # grows to support more blocks)

▪ A FAT may be bigger than one block

▪ Since we need to keep the FAT in memory, this increases our
memory consumption as well

▪ FAT got fazed out for I-nodes (next lecture) because of this
56

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT size

❖ When you create a file system with PennFAT, you specify
the number of blocks the FAT (this is just the table) takes
up and the size of a block.

❖ Let’s say l want to create a FAT that spans 4 blocks, a
block is 4096 (212) bytes, and a FAT entry is 2 bytes.

▪ How many entries do I have?

▪ How many Blocks do we have that can store actual file data?

57

pollev.com/tqm

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT size

❖ When you create a file system with PennFAT, you specify
the number of blocks the FAT (this is just the table) takes
up and the size of a block.

❖ Let’s say l want to create a FAT that spans 4 blocks, a
block is 4096 bytes, and a FAT entry is 2 bytes.

▪ How many entries do I have? 4 * 212 / 2 = [213]

▪ How many Blocks do we have that can store actual file data?
[213 - 1] (next slide)

58

pollev.com/tqm

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT Details

❖ If we have N entries in the FAT, we only have N – 1 blocks
in the FAT

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ An entry is 16-bits, which is 2 bytes.

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

59

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT[0] MSB

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The MSB is number of blocks in the FAT

▪ in this example, the FAT is 32 blocks

60

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT[0] LSB

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The LSB is between 0 and 4, and
specifies the size of the blocks for
the file system

61

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS FAT Entry Special Values

❖ A PennFAT entry is 16-bits and only contains the block
number of the next block in the file.

❖ There are two special values a PennFAT entry can hold

❖ 0x0000 (0 in decimal)

▪ Indicate the block is free.

▪ We start indexing into our blocks in the data region starting with
index 1

❖ 0xFFFF (65535 as unsigned, -1 as signed)

▪ Indicates that there is no block after this logically in the file

▪ That this is the last block in the file
62

CIS 3800, Spring 2024L07: File System IntroUniversity of Pennsylvania

PennOS root Directory

❖ PennFAT has a special value for FAT[1] as well.

❖ It still corresponds to a data block, but that data block is
the first block of the root directory

❖ This means we always know where the root directory
starts. (at index 1 into the data region)

63

Disk:

FAT FAT FAT FAT Root
Blk 0

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

	Default Section
	Slide 1: File System Intro Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Penn-Shell Compatibility
	Slide 6: Poll: how are you?
	Slide 7: Lecture Outline
	Slide 8: Files
	Slide 9: Directories
	Slide 10: Hierarchical File System
	Slide 11: File System: User Level STD API
	Slide 12: File System: User Level STD API again
	Slide 13: User Perspective: A stream of bytes
	Slide 14: User Perspective: A stream of bytes
	Slide 15: User Perspective: A stream of bytes
	Slide 16: User Perspective: A stream of bytes
	Slide 17: File System
	Slide 18: The File System Foundations
	Slide 19: Not quite just an array of ints..
	Slide 20: Storage Mediums Interface: Blocks
	Slide 21: Operating System Perspective: Blocks
	Slide 22: Operating System Perspective: Blocks
	Slide 23: Building up to a full filesystem
	Slide 24: Solution: Directories
	Slide 25: Solution: Directories
	Slide 26: Solution: Root Directory
	Slide 27: Bitmap
	Slide 28: Expanding on our model
	Slide 29: Contiguous Allocation
	Slide 30: Contiguous Allocation: Random Access
	Slide 31: Contiguous Allocation: Random Access
	Slide 32: Contiguous allocation: problems
	Slide 33: Do blocks need to be contiguous?
	Slide 34: Linked List Allocation
	Slide 35: Linked List Allocation
	Slide 36: Linked List Allocation: Random Access
	Slide 37: Linked List Allocation: Random Access
	Slide 38: Seek Time
	Slide 39: Linked Allocation Analysis
	Slide 40: Linked List via FAT
	Slide 41: Memory Hierarchy
	Slide 42: FAT (File Allocation Table)
	Slide 43: FAT (File Allocation Table)
	Slide 44: FAT Lookup
	Slide 45: FAT Lookup
	Slide 46: FAT Walkthrough
	Slide 47: FAT Walkthrough
	Slide 48: FAT Walkthrough
	Slide 49: FAT Walkthrough
	Slide 50: FAT Walkthrough
	Slide 51: FAT Walkthrough
	Slide 52: Linked List via FAT
	Slide 53: Expanding or shrinking files in FAT
	Slide 54: Expanding or shrinking files in FAT
	Slide 55: FAT is great *
	Slide 56: FAT size
	Slide 57: PennOS FAT size
	Slide 58: PennOS FAT size
	Slide 59: PennOS FAT Details
	Slide 60: PennOS FAT[0] MSB
	Slide 61: PennOS FAT[0] LSB
	Slide 62: PennOS FAT Entry Special Values
	Slide 63: PennOS root Directory

