
CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT, I-nodes
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ How is milestone 1 looking?

2

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Administrivia

❖ Penn-shell is out!

▪ Full thing is due at the end of the week (2/23 @ 11:59 pm)

▪ Done in partners

▪ Should have everything you need to complete the assignment in
this class

▪ Please add your partner to the gradescope submission if you can.

▪ Autograder for full thing should be up today

3

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Administrivia

❖ Midterm booked:

▪ 5:15 - 7:15 pm in Meyerson B1

▪ Thursday 2/29 (the Thursday before break)

▪ Let me know if you conflicts

❖ Final Tentatively Booked

▪ Tuesday May 7th, Noon – 2pm in Towne 100

▪ Not confirmed yet, but this is likely it

❖ Travis is still a little sick, but probably be in-person for
next lecture

4

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the
top of your file before you #include anything

▪ This *should* get
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
should still accept it

5

#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing?

6

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

❖ FAT & PennFAT wrap-up

❖ Inodes

❖ Directories

❖ Block Caching

7

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Memory Hierarchy

8

Files systems are really

really really slow compared

to accessing memory

I’ll talk about

caches later

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT (File Allocation Table)

❖ Instead of this:

❖ We can instead store the pointers or “links” in a table in
memory to get…

9

Bit-
map

Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Linked List via FAT

❖ FAT is logically very similar as a linked list, we just store
the links somewhere else that can be conveniently stored
in memory

❖ Since the links are in memory, we can find the Nth block of
a file with much fewer disk accesses

❖ Disk accesses take a long time, so this is good ☺

10

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ This table is called the
File Allocation Table (FAT)

❖ This table is in memory
when it is running

❖ Table stored in disk
initially, loaded into
memory when computer
is booted.

❖ Replaces the bitmap

▪ Why can it do that?

FAT (File Allocation Table)

11

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

FAT Walkthrough

12

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Read the directory entry
for File D to see that it starts
at block 2

FAT Walkthrough

13

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#2 and the “next” says
where the next block is
(physical block 6)

FAT Walkthrough

14

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#6 and the “next” says
where the next block is
(physical block 3)

FAT Walkthrough

15

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ Lookup next block in the
FAT. We go to FAT entry
#3 and the “next” says
where the next block is
(physical block 9)

FAT Walkthrough

16

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ The FAT is the reason why
the operating system
knows which block is
used for which purpose

❖ If we wanted to read the
4th block from file D:

▪ The FAT entry for block 9
has a special value for “next”
to indicate it is the last block
in the file

FAT Walkthrough

17

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END
Disk:

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Expanding or shrinking files in FAT

❖ What if we want to extend a file in FAT?

❖ What steps do we need to take?

❖ Hint: FAT is in memory, what are the big differences
between Disk and Memory?

18

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Expanding or shrinking files in FAT

❖ What if we want to extend a file in FAT?

❖ What steps do we need to take?

▪ Lookup a free block in the FAT, mark it as a last block

▪ Lookup the last block in the file, change its FAT entry to think the
newly allocated block is the new “last”

▪ …

▪ Write the FAT table to disk, memory is volatile storage

❖ Hint: FAT is in memory, what are the big differences
between Disk and Memory?

19

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT is great ☺*

❖ FAT has allowed us to have non-contiguous blocks for a
file.

❖ At the same time, we only need one disk read to access
the Nth block of a file

❖ What could go wrong with this?

▪ FAT is really big and is in memory, so memory consumption goes
up

20

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT size

❖ A FAT is similar to a bitmap

▪ A bitmap needs 1 bit per block

▪ A FAT needs ~16-bits per block

❖ At least we don’t need bitmap anymore!

❖ Grows a lot as the size of disk grows

▪ As the disk grows, there are more blocks in the disk. We need
more FAT entries, and each entry needs more bits. (To hold the
block number. # of bits for block # grows to support more blocks)

▪ A FAT may be bigger than one block

▪ Since we need to keep the FAT in memory, this increases our
memory consumption as well

▪ FAT got fazed out for I-nodes (next lecture) because of this
21

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT size

❖ When you create a file system with PennFAT, you specify
the number of blocks the FAT (this is just the table) takes
up and the size of a block.

❖ Let’s say l want to create a FAT that spans 4 blocks, a
block is 4096 (212) bytes, and a FAT entry is 2 bytes.

▪ How many entries do I have?

▪ How many Blocks do we have that can store actual file data?

22

pollev.com/tqm

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT size

❖ When you create a file system with PennFAT, you specify
the number of blocks the FAT (this is just the table) takes
up and the size of a block.

❖ Let’s say l want to create a FAT that spans 4 blocks, a
block is 4096 (212) bytes, and a FAT entry is 2 bytes.

▪ How many entries do I have? 4 * 212 / 2 = [213]

▪ How many Blocks do we have that can store actual file data?
[213 - 1] (next slide)

23

pollev.com/tqm

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT Details

❖ If we have N entries in the FAT, we only have N – 1 blocks
in the FAT

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ An entry is 16-bits, which is 2 bytes.

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

24

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT[0] MSB

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The MSB is number of blocks in the FAT

▪ in this example, the FAT is 32 blocks

25

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT[0] LSB

❖ The first FAT entry FAT[0] holds meta data about the
FAT, so it doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The LSB is between 0 and 4, and
specifies the size of the blocks for
the file system

26

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS FAT Entry Special Values

❖ A PennFAT entry is 16-bits and only contains the block
number of the next block in the file.

❖ There are two special values a PennFAT entry can hold

❖ 0x0000 (0 in decimal)

▪ Indicate the block is free.

▪ We start indexing into our blocks in the data region starting with
index 1

❖ 0xFFFF (65535 as unsigned, -1 as signed)

▪ Indicates that there is no block after this logically in the file

▪ That this is the last block in the file
27

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

PennOS root Directory

❖ PennFAT has a special value for FAT[1] as well.

❖ It still corresponds to a data block, but that data block is
the first block of the root directory

❖ This means we always know where the root directory
starts. (at index 1 into the data region)

28

Disk:

FAT FAT FAT FAT Root
Blk 0

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

❖ FAT & PennFAT wrap-up

❖ Inodes

❖ Directories

❖ Block Caching

29

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ What was the big downside of using FAT?

30

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ What was the big downside of using FAT?

❖ Big memory consumption, one entry needed for every
block in the file system, and that all needs to be in
memory.

▪ A FAT likely spans multiple blocks

▪ This size also grows as disk grows :/

31

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ Could we instead store FAT blocks on disk and only load
into memory the parts that are used for looking up files
that are currently open/being used?

32

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ Could we instead store FAT blocks on disk and only load
into memory the parts that are used for looking up files
that are currently open/being used?

❖ Yes, but the blocks of a file could be spread out across
disk. We may have to load all FAT blocks to lookup a file
anyways

33

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

❖ Blocks of a file could be spread out across disk. We may
have to load all FAT blocks to lookup a file anyways

❖ Small example:

▪ consider block size 256,

▪ FAT entry 2 bytes, so 128
entries per FAT block

▪ FAT takes up 4 blocks

❖ Reminder: FAT region is separate from the data region
(blocks it manages)

34

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

❖ Blocks of a file could be spread out across disk. We may
have to load all FAT blocks to lookup a file anyways

❖ Small example:

▪ consider block size 256,

▪ FAT entry 2 bytes, so 128
entries per FAT block

▪ FAT takes up 4 blocks

35

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region

Block # Next

…

2 128

…

128 256

…

256 500

…

500

Consider we have a file that starts at
block 2 into the data region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

❖ Blocks of a file could be spread out across disk. We may
have to load all FAT blocks to lookup a file anyways

❖ Small example:

▪ consider block size 256,

▪ FAT entry 2 bytes, so 128
entries per FAT block

▪ FAT takes up 4 blocks

36

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region

Block # Next

…

2 128

…

128 256

…

256 500

…

500

Consider we have a file that starts at
block 2 into the data region

We would need to read in the whole FAT just to look up this file

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Inode motivation

❖ Idea: we usually don’t care about ALL blocks in the file
system, just the blocks for the currently open files

❖ Can we group the block numbers of a file together?

❖ Yes: we call these inodes:

▪ Contains some metadata about
the file and 12 physical block
numbers corresponding to the
first 12 logical blocks of a file

37

meta data

0th phys block #

1st phys block #

2nd phys block #

3rd phys block #

4th phys block #

…

12th phys block #

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Inode layout

❖ Inodes contain:

▪ some metadata about the file

• Owner of the file

• Access permissions

• Size of the file

• Time of last change

▪ 12 physical block numbers corresponding
to the first 12 logical blocks of a file

❖ In C struct format:

38

struct inode_st {

 attributes_t metadata;

 block_no_t blocks[12];

 // more fields to be shown

 // on later slides

};

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Inodes Disk Layout

❖ When we use Inodes instead of FAT, we get something
like this instead:

39

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

❖ When we use Inodes instead of FAT, we get something
like this instead:

❖ Inodes are smaller than a block, can fit multiple inodes in
a single block

❖ Each Inode is numbered

Inodes Disk Layout

40

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

❖ Each File will have an Inode number

❖ Suppose that we wanted to look up a file that is made of 4
blocks.

▪ First, we need the Inode number for the file (lets assume it is 2)

41

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

❖ Each File will have an Inode number

❖ Suppose that we wanted to look up a file that is made of 4
blocks.

▪ First, we need the Inode number for the file (lets assume it is 2)

▪ We can read the Inode to see which blocks makeup the file

42

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0th phys block # 0

1st phys block # 5

2nd phys block # 3

3rd phys block # 2

…

The block numbers in the Inode are indexes
relative to the start of the data region.

You will be doing this in PennOS too

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

❖ Each File will have an Inode number

❖ Suppose that we wanted to look up a file that is made of 4
blocks.

▪ First, we need the Inode number for the file (lets assume it is 2)

▪ We can read the Inode to see which blocks makeup the file

43

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

0th … 3rd 2nd … 1st …

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0th phys block # 0

1st phys block # 5

2nd phys block # 3

3rd phys block # 2

…

The block numbers in the Inode are indexes
relative to the start of the data region.

You will be doing this in PennOS too

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

❖ So with Inodes, how many blocks can we have per file?

▪ So far: 12 blocks per file (this is not enough, way too small!

❖ We can allocate a block to hold more block numbers

▪ This block can hold 128 block numbners

44

meta data …

0th phys block # 0

1st phys block # 5

… …

11th phys block # 2

Block of ptrs

…

12th phys block # --

13st phys block # --

… …

139th phys block # --

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

❖ So with Inodes, how many blocks can we have per file?

▪ So far: 12 blocks per file (this is not enough, way too small!

❖ We can allocate a block to hold more block numbers

45

struct inode_st {

 attributes_t metadata;

 block_no_t blocks[12];

 block_no_t more_pointers;

 // more fields to be shown

 // on later slides

};

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

❖ So with Inodes, how many blocks can we have per file?

▪ So far: 12 blocks per file (this is not enough, way too small!

❖ We can allocate a block to hold more block numbers

46

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

0th … 3rd 2nd ptr
blk

1st …

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0th phys block # 0

1st phys block # 5

… …

11th phys block # …

Block of ptrs 4

12th phys block # …

13th phys block # …

14st phys block # …

… …

138th phys block # …

139th phys block # …

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

We need moreeeeee

❖ What if a file needs more than 140 blocks?

❖ Add another field to the inode that refers to a block that
refers to other blocks that refer to data blocks

47

meta data …

0th phys block # 0

1st phys block # 5

… …

11th phys block # 2

Block of ptrs

Indirect block

…

12th phys block # --

13st phys block # --

… …

139th phys block # --

Block for 140-267 --

Block for 268- --

… …

…. --

140th phys block # --

141st phys block # --

… …

267th phys block # --

268th phys block # --

269th phys block # --

… …

bigth phys block # --

This block does NOT directly refer
to blocks containing file data

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

MORE MORE MORE MORE MORE MORE MORE

❖ What if our file needs more than that?

▪ We can add another field to our Inode that refers to a pointer
block that refers to pointer blocks that refer to data blocks…

48

meta data …

0th phys block # 0

1st phys block # 5

… …

11th phys block # 2

Block of ptrs

Indirect block

trebly indirect

12th phys block # --

13st phys block # --

… …

139th phys block # --

Block for 140-267 --

Block for 268- --

… …

…. --

140th phys block # --

141st phys block # --

… …

267th phys block # --

268th phys block # --

269th phys block # --

… …

bigth phys block # --

--

--

…

--

--

--

…

--

--

--

…

--

ath phys block # --

bth phys block # --

… …

cth phys block # --

dth phys block # --

eth phys block # --

… …

fth phys block # --

gth phys block # --

hth phys block # --

… …

ith phys block # --

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

More?

❖ No more (at least on ext2)

❖ If you need more space than this, the operating system
will tell you no

❖ Boon did the math on this: this is already enough for a file
that is

❖ Big enough

49

𝟏𝟐𝟖 × 𝟓𝟏𝟐 + 𝟏𝟎 × 𝟓𝟏𝟐 𝑩𝒚𝒕𝒆𝒔

𝟏𝟐𝟖𝟐 × 𝟓𝟏𝟐 + 𝟏𝟐𝟖 × 𝟓𝟏𝟐 + 𝟏𝟎 × 𝟓𝟏𝟐 𝑩𝒚𝒕𝒆𝒔

𝟏𝟐𝟖𝟑 × 𝟓𝟏𝟐 + 𝟏𝟐𝟖𝟐 × 𝟓𝟏𝟐 + 𝟏𝟐𝟖 × 𝟓𝟏𝟐

+ 𝟏𝟎 × 𝟓𝟏𝟐 𝑩𝒚𝒕𝒆𝒔

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ How is this better than FAT?

50

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

❖ How is this better than FAT?

❖ Inodes keep all the information of a file near each other

❖ if we wanted to store in memory only the information of
open files, we could do that with les memory
consumption

❖ In other words: only need to store in memory the inodes
of the open files instead of the whole FAT

51

pollev.com/tqm

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

❖ FAT & PennFAT wrap-up

❖ Inodes

❖ Directories

❖ Block Caching

52

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Directory Entries with Inodes

❖ With FAT we said a directory entry had:

▪ The file name

▪ The number of the first block of the file

❖ With Inodes, we instead store the inode number for the
file in the directory entry

53

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Reminder: Directories

❖ A directory is essentially like a file

▪ We will store its data on disk inside of blocks (like a file)

❖ The directory content format is known to the file system.

▪ Contains a list of directory entries

▪ Each directory entry contains the name of the file, some metadata
and…

• If using Inodes, the inode for the file

• If using FAT, the first block number of the file

▪ I know we just said Inodes are better and more modern, but
PennOS uses FAT so my examples will follow that, it is not much
different for Inodes though 54

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Review: Directories

❖ In FAT our file system looked something like this:

▪ 2 regions, and assuming FAT is just 1 block

❖ And the root Directory contains a list of directory entries

55

FAT Root
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

File Name Block Number

A 7

B 4

C 9

D 2

E 10

Data regionFAT region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Growing a Directory

❖ In FAT our file system looked something like this:

▪ 2 regions, and assuming FAT is just 1 block

❖ What happens if the root directory starts filling up?

▪ The root directory is itself a file, it can expand to another block

56

FAT Root
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

FAT Root
Dir

??? ??? ??? ??? Root
Dir

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Growing a Directory

❖ We would also need to update the FAT to account for this
change.

▪ Root directory in PennFAT starts at index 1 into the data region

▪ Index 1 into the data region is the first block in the data region

57

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 END

… …

…. …

… …

6 EMPTY

7 EMPTY

… …

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 6

… …

…. …

… …

6 END

7 EMPTY

… …

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

58

FAT FAT FAT FAT Root
Dir

??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

59

FAT FAT FAT FAT Root
Dir

??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

60

FAT FAT FAT FAT Root
Dir

File B ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

61

FAT FAT FAT FAT Root
Dir

File B File B ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

62

FAT FAT FAT FAT Root
Dir

File B File B Root
Dir

??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

63

FAT FAT FAT FAT Root
Dir

File B File B Root
Dir

EMP
TY

??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

64

FAT FAT FAT FAT Root
Dir

File B File B Root
Dir

EMP
TY

File C ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

65

FAT FAT FAT FAT Root
Dir

File B File B Root
Dir

EMP
TY

File C File A ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

❖ Let's say PennFAT is 4
blocks

❖ What are value of the
remaining blocks in the
diagram?

66

FAT FAT FAT FAT Root
Dir

File B File B Root
Dir

EMP
TY

File C File A File B

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DiscussQuestion is not good format for pollev

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File
Name

Block
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data
region starting at index 1

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Sub Directories

❖ In PennOS, we are only required to deal with 1 directory,
but you can implement sub-directories.

▪ Sub directories are just other (special) files

❖ Consider we have the following two directories and files

▪ /a.txt

▪ /usr/a.txt

▪ Above are two separate files!

67

FAT FAT FAT FAT Root
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Sub Directories

❖ We would also have some information in a directory entry
to specify what kind of file it is

68

FAT FAT FAT FAT Root
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

Root DIR

File
Name

Block
Number

File
Type

a.txt 2 Regular

usr/ 5 directory

… ..

usr DIR

File
Name

Block
Number

File
Type

a.txt 6 Regular

… ..

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

. and ..

❖ It would be useful to support . and ..

▪ . Refers to the current directory, .. refers to parent directory

69

FAT FAT FAT FAT Root
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

root DIR

File
Name

Block
Number

File
Type

. 1 directory

.. 1 directory

a.txt 2 Regular

usr/ 5 directory

… ..

usr DIR

File
Name

Block
Number

File
Type

. 5 directory

.. 1 directory

a.txt 6 Regular

… ..

Has no parent,
refers to self

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

❖ FAT & PennFAT wrap-up

❖ Inodes

❖ Directories

❖ Block Caching

70

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching

❖ Disk I/O is really slow (relative to accessing memory)

❖ What can we do instead to make it faster?

▪ Keep data that we want to access in memory ☺

▪ We already did this with FAT and Inodes for open files

❖ We can do the same for data blocks we think we may use
again in the future

71

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching Data Structure

❖ We can use a linked list to store blocks in LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

72

Discuss

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching Data Structure

❖ We can use a linked list to store blocks in LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

73

Discuss

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

O(n)

O(1)

O(1)

Is there a structure we know of that has O(1) lookup time?

CIS 3800, Spring 2024L08: FAT & I-nodesUniversity of Pennsylvania

Chaining Hash Cache

❖ We can use a combination of two data structures:
▪ linked_list<block>

▪ hash_map<block_num, node*>

74

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

list

key vlaue

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

Implementing and coming up with
this was an interview question for me.
Full time position @ Microsoft

	Default Section
	Slide 1: FAT, I-nodes Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Penn-Shell Compatibility
	Slide 6: Poll: how are you?
	Slide 7: Lecture Outline
	Slide 8: Memory Hierarchy
	Slide 9: FAT (File Allocation Table)
	Slide 10: Linked List via FAT
	Slide 11: FAT (File Allocation Table)
	Slide 12: FAT Walkthrough
	Slide 13: FAT Walkthrough
	Slide 14: FAT Walkthrough
	Slide 15: FAT Walkthrough
	Slide 16: FAT Walkthrough
	Slide 17: FAT Walkthrough
	Slide 18: Expanding or shrinking files in FAT
	Slide 19: Expanding or shrinking files in FAT
	Slide 20: FAT is great *
	Slide 21: FAT size
	Slide 22: PennOS FAT size
	Slide 23: PennOS FAT size
	Slide 24: PennOS FAT Details
	Slide 25: PennOS FAT[0] MSB
	Slide 26: PennOS FAT[0] LSB
	Slide 27: PennOS FAT Entry Special Values
	Slide 28: PennOS root Directory
	Slide 29: Lecture Outline
	Slide 30: Poll: how are you?
	Slide 31: Poll: how are you?
	Slide 32: Poll: how are you?
	Slide 33: Poll: how are you?
	Slide 34: Explanation
	Slide 35: Explanation
	Slide 36: Explanation
	Slide 37: Inode motivation
	Slide 38: Inode layout
	Slide 39: Inodes Disk Layout
	Slide 40: Inodes Disk Layout
	Slide 41: Example File Block Lookup
	Slide 42: Example File Block Lookup
	Slide 43: Example File Block Lookup
	Slide 44: File Sizes with Inode
	Slide 45: File Sizes with Inode
	Slide 46: File Sizes with Inode
	Slide 47: We need moreeeeee
	Slide 48: MORE MORE MORE MORE MORE MORE MORE
	Slide 49: More?
	Slide 50: Poll: how are you?
	Slide 51: Poll: how are you?
	Slide 52: Lecture Outline
	Slide 53: Directory Entries with Inodes
	Slide 54: Reminder: Directories
	Slide 55: Review: Directories
	Slide 56: Growing a Directory
	Slide 57: Growing a Directory
	Slide 58: FAT Lookup
	Slide 59: FAT Lookup
	Slide 60: FAT Lookup
	Slide 61: FAT Lookup
	Slide 62: FAT Lookup
	Slide 63: FAT Lookup
	Slide 64: FAT Lookup
	Slide 65: FAT Lookup
	Slide 66: FAT Lookup
	Slide 67: Sub Directories
	Slide 68: Sub Directories
	Slide 69: . and ..
	Slide 70: Lecture Outline
	Slide 71: Block Caching
	Slide 72: Block Caching Data Structure
	Slide 73: Block Caching Data Structure
	Slide 74: Chaining Hash Cache

