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Administrivia

❖ Penn-shell is out!

▪ Full thing is due at the end of the week (2/23 @ 11:59 pm)

▪ Done in partners

▪ Should have everything you need to complete the assignment

▪ Please add your partner to the gradescope submission if you can.
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Administrivia

❖ Midterm booked:

▪ 5:15 - 7:15 pm in Meyerson B1

▪ Thursday 2/29 (the Thursday before break)

▪ Let me know if you conflicts

❖ Final Tentatively Booked

▪ Tuesday May 7th, Noon – 2pm in Towne 100

▪ Not confirmed yet, but this is likely it

❖ Travis is still a little sick, but probably be in-person for 
next lecture
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Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the 
top of your file before you #include anything

▪ This *should* get 
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
*should* still accept it

4

#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif
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Poll: how are you?

❖ How are you doing?

5

pollev.com/tqm
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Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

6
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Memory Hierarchy

7
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Principle of Locality

❖ The tendency for the Programs to access the same set of 
memory locations over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will 
likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely 
reference memory close to it in the near future.

❖ Data that is accessed frequently can be stored in 
hardware that is quicker to access.

8
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Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone 
you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers: https://colin-
scott.github.io/personal_website/research/interactive_lat
ency.html
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https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
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Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

10
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❖ If we compile this and run it, how many times is hello 
printed?

11

int main() {

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  if (fork() == 0) {

    write(STDOUT_FILENO, "hello", 5);

  }

  return EXIT_SUCCESS;

}

pollev.com/tqm
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❖ If we compile this and run it, how many times is hello 
printed?

12

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands
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❖ If we compile this and run it, how many times is hello 
printed?

13

int main() {

  if (fork() == 0) {

    printf("hello\n");

  }

  if (fork() == 0) {

    printf("hello\n");

  }

  return EXIT_SUCCESS;

}

Raise Your Hands



CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

C stdio vs POSIX

❖ Why are we getting these different outputs?

❖ Let’s start with the first two. Both use different ways of 
writing to standard out.

▪ C stdio : user level portable library for standard input/output. 
Should work on any environment that has the C standard library

• E.g. printf, fprintf, fputs, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that 
are supported by many operating systems to support many OS-
level concepts (Input/Output, networking, processes, threads…)

14
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Buffered writing

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one writes with fwrite(),  the data being written is 
copied into a buffer allocated by stdio inside your process’ 
address space

▪ As some point, once enough data has been written, the buffer will 
be “flushed” to the operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the 
filesystem too often

15
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Buffered Writing Example

16

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Buffered Writing Example

17

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

Store ‘h’ into 

buffer, so that 

we do not go to 

filesystem yet
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Buffered Writing Example

18

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h

Store ‘i’ into 

buffer, so that 

we do not go to 

filesystem yet
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Buffered Writing Example

19

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next

C stdio buffer

h i

When we call fclose, we 

deallocate and flush 

the buffer to disk
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Buffered Writing Example

20

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  FILE* fout = fopen("hi.txt", "wb");

  // read "hi" one char at a time

  fwrite(&buf, sizeof(char), 1, fout);

   fwrite(&buf+1, sizeof(char), 1, fout);

  fclose(fout);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

21

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

22

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

23

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

24

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Unbuffered Writing Example

25

int main(int argc, char** argv) {

  char buf[2] = {'h', 'i'};

  int fd = open("hi.txt", O_WRONLY | O_CREAT);

  // read "hi" one char at a time

  write(fd, &buf, sizeof(char));

   write(fd, &buf+1, sizeof(char));

  close(fd);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next

Two OS/File system 

accesses instead of one 
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Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a 
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

26
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Buffered Reading Example

27

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

Arrow signifies what 
will be executed next
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Buffered Reading Example

28

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

Arrow signifies what 
will be executed next

h i

Read as much as 

you can from the 

file

Copy out what 

was requested
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Buffered Reading Example

29

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

Arrow signifies what 
will be executed next

Get next char

from buffer

No need to go to file!
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Buffered Reading Example

30

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

Arrow signifies what 
will be executed next
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Buffered Reading Example

31

int main(int argc, char** argv) {

  char buf[2];

  FILE* fin = fopen("hi.txt", "rb");

  // read "hi" one char at a time

  fread(&buf, sizeof(char), 1, fin);

   fread(&buf+1, sizeof(char), 1, fin);

  fclose(fin);

  return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what 
will be executed next
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Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not 
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and 

memory bandwidth

▪ Can potentially slow down high-performance applications, like a 
web server or database (“zero-copy”)

❖ When is buffering faster?  Slower?

32

Many small writes

Or only writing a little

Large writes
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

33

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

34

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 1

stdio buf

hello
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

35

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello
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Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the 
programs address space

36

int main() {

  if (fork() == 0) {

    printf("hello");

  }

  if (fork() == 0) {

    printf("hello");

  }

  return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello

hello

hello

Hello is printed 4 times!
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Fork Problem Explained (pt.2)

❖ Why did we get different outputs when printf printed a 
newline character after hello? 

▪ Only difference was: 
vs

❖ All we needed to do to get the expected output was add a 
\n. why?

❖ printf prints to stdout and by default stdout is line 
buffered. Meaning it flushes the buffer on a newline 
character

▪ If we ran ./prog > out.txt (redirect the output), we would get 
different output since buffering policy changes. 

37

printf("hello"); printf("hello\n");
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How to flush/modify the cstdio buffer

❖ For C stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ setvbuf

▪ Has a family of related functions like setbuf(), setbuffer(), 
setlinebuf();

▪ Can set the stream to be unbuffered or a specified buffer 

38

int fflush(FILE* stream);

int setvbuf(FILE* stream, char* buf,

            int mode, size_t size);
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How to flush POSIX?

❖ When we write to a file with POSIX it is sent to the 
filesystem, is it immediately sent to disc? No

▪ Well, we do have the block cache… so it may not be written to 
disc

▪ Since all File I/O requests go to the file system, if another process 
accesses the same file, then it should see the data even if it is the 
block cache and not in disc.

▪ If we lose power though…

39



CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

How to flush POSIX to disk 

❖ Two functions

▪ Fsync

▪ Flushes all in-core data and metadata to the storage medium

▪ fdatasync

▪ Sends the file data to disk

▪ Does not flush modified metadata unless necessary for data.

❖ C stdio is usually implemented using POSIX
on posix compliant systems
▪ fflush may not necessarily call fsync

40

int fsync(int fd);

int fdatasync(int fd);
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Blank slide

❖ Blank slide

41
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Poll: how are you?

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

42

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly 
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm
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Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

43
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Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

44
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Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to 
access

▪ We see this already with registers. Data in registers is stored on 
the chip and is faster to access than registers

45
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Memory Hierarchy

46

Each layer can be thought 

of as a “cache” of the layer 

below
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Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space 
goes up, but access times increase

47
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Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on 
performance

▪ It is important that data is quick to access to get better CPU 
utilization 48
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Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, 
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the 
storage of data for increased performance. Data is usually 
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be 
stored on disk. (Instead of going to disk, we can go to physical 
memory which is quicker to access)

49
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Memory (as we know it now)

❖ The CPU directly uses an address to access a location in 
memory

50

CPU

0:

1:

2:

3:

4:

5:

...

data
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Virtual Address Translation
❖ Programs don’t know about many of things going on 

under the hood with memory.they send an address to the 
MMU, and the MMU will help get the data 

51

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address 

(0x300)

data

MMU

Physical address 
(0x3)

Memory
Management
Unit

RAM

Also checks 
Caches 

Caches
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Cache Analogy

❖ If we are at home and we are hungry, were do we get 
food from?

▪ We get it from our refrigerator!

▪ If the refrigerator is empty, we go to the grocery store

▪ When at the grocery store, we don’t just get what we want right 
now, but also get other things we think we want in the near 
future (so that it will be in our fridge when we want it)

52



CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data 
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

53

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
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Cache Performance

❖ Accessing data in the cache allows for much better 
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: 
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

54
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Cache Lines

❖ Imagine memory as a big array of data:

❖ We can split memory into 64-byte “lines” or “blocks”(64 
bytes on most architectures)

❖ When we access data at an address, we bring the whole 
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!

55

Access this data
Neighboring data brought into the cache
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Principle of Locality

❖ The tendency for the CPU to access the same set of 
memory locations over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will 
likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely 
reference memory close to it in the near future.

❖ Caches take advantage of these tendencies to help with 
cache management

56
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Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines 
inside it.

❖ When we access data not in the cache, and the cache is 
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on 
the address to determine which entry in the cache we can 
store it in. (Depending on architecture, 1 to 12 possible 
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the 
entries a line can be stored in

57
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LRU (Least Recently Used)

❖ If a cache line is used recently, it is likely to be used again 
in the near future

❖ Use past knowledge to predict the future

❖ Replace the cache line that has had the longest time since 
it was last used

58
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Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a 
sequence of sorted numbers. To do this, we generate a 
random number and insert the number so that it remains 
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly 
generate an index and remove that index from the 
sequence until it is empty. Would this be faster on a 
LinkedList or an ArrayList? 

59
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ ArrayList In C++:

60

int main() {

  vector<int> array_list {1, 2, 3};

  // … 

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data = 

1 2 3

stack:

Elements are next to each 
other in memory ☺
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Data Structure Memory Layout

❖ Important to understanding the poll questions, we 
understand the memory layout of these data structures

❖ LinkedList In C++:

61

int main() {

  list<int> linked_list {1, 2, 3, 4};

  // … 

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail = 

head = 

stack:

Elements are not next
to each other in memory 
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Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from 
spatial complexity (and temporal complexity from being iterated 
through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your 
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best 
bet is to experiment try all options and analyze which is better.
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What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, 
you have an instance of that object. If you declare it as a 
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the 
memory model is slightly different. Instead, all object 
variables are object references, that refer to an object 
on the heap
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ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object 
variables are object references, that refer to an object on 
the heap

64

public class MemoryModel {

  public static void main(String[] args) {

    ArrayList l = new ArrayList({1, 2, 3}); 

   // … 

  }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data = 

1

2

3
heap:

stack:
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Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

66

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm
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Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional 
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or 
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

67

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm
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Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take 
advantage of the cache
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Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches 
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in 
inheritance

69

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 70

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> l = new ArrayList<A>(); 

    // … 

    for (A item : l) {

       item.compute();

    }

  }

}

public class B extends A {

  public void compute() {

    // … 

  }

}

public class C extends A {

  public void compute() {

    // … 

  }

}

public class A {

  public void compute() {

    // … 

  }

}
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Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

71

public class ICacheExample {

  public static void main(String[] args) {

    ArrayList<A> la = new ArrayList<A>();

    ArrayList<B> lb = new ArrayList<B>(); 

    ArrayList<C> lc = new ArrayList<C>(); 

    // … 

    for (A item : la) {

       item.compute();

    }

    for (B item : lb) {

       item.compute();

    }

    for (C item : lc) {

       item.compute();

    }

  }

}
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