
CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Locality, Buffering, Caches
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Administrivia

❖ Penn-shell is out!

▪ Full thing is due at the end of the week (2/23 @ 11:59 pm)

▪ Done in partners

▪ Should have everything you need to complete the assignment

▪ Please add your partner to the gradescope submission if you can.

2

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Administrivia

❖ Midterm booked:

▪ 5:15 - 7:15 pm in Meyerson B1

▪ Thursday 2/29 (the Thursday before break)

▪ Let me know if you conflicts

❖ Final Tentatively Booked

▪ Tuesday May 7th, Noon – 2pm in Towne 100

▪ Not confirmed yet, but this is likely it

❖ Travis is still a little sick, but probably be in-person for
next lecture

3

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Penn-Shell Compatibility

❖ From the signal(2) man page

❖ If you want to have better help from TA’s put this at the
top of your file before you #include anything

▪ This *should* get
signals to behave as we
expect, so TAs can
better help

▪ If you got it working
another way, that is
OK. Auto-grader
should still accept it

4

#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif

#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE 1
#endif

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing?

5

pollev.com/tqm

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

6

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Memory Hierarchy

7

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the Programs to access the same set of
memory locations over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will
likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely
reference memory close to it in the near future.

❖ Data that is accessed frequently can be stored in
hardware that is quicker to access.

8

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone
you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers: https://colin-
scott.github.io/personal_website/research/interactive_lat
ency.html

9

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

10

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello
printed?

11

int main() {

 if (fork() == 0) {

 write(STDOUT_FILENO, "hello", 5);

 }

 if (fork() == 0) {

 write(STDOUT_FILENO, "hello", 5);

 }

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello
printed?

12

int main() {

 if (fork() == 0) {

 printf("hello");

 }

 if (fork() == 0) {

 printf("hello");

 }

 return EXIT_SUCCESS;

}

Raise Your Hands

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

❖ If we compile this and run it, how many times is hello
printed?

13

int main() {

 if (fork() == 0) {

 printf("hello\n");

 }

 if (fork() == 0) {

 printf("hello\n");

 }

 return EXIT_SUCCESS;

}

Raise Your Hands

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

C stdio vs POSIX

❖ Why are we getting these different outputs?

❖ Let’s start with the first two. Both use different ways of
writing to standard out.

▪ C stdio : user level portable library for standard input/output.
Should work on any environment that has the C standard library

• E.g. printf, fprintf, fputs, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that
are supported by many operating systems to support many OS-
level concepts (Input/Output, networking, processes, threads…)

14

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered writing

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one writes with fwrite(), the data being written is
copied into a buffer allocated by stdio inside your process’
address space

▪ As some point, once enough data has been written, the buffer will
be “flushed” to the operating system.

• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the
filesystem too often

15

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Writing Example

16

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 FILE* fout = fopen("hi.txt", "wb");

 // read "hi" one char at a time

 fwrite(&buf, sizeof(char), 1, fout);

 fwrite(&buf+1, sizeof(char), 1, fout);

 fclose(fout);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Writing Example

17

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 FILE* fout = fopen("hi.txt", "wb");

 // read "hi" one char at a time

 fwrite(&buf, sizeof(char), 1, fout);

 fwrite(&buf+1, sizeof(char), 1, fout);

 fclose(fout);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C stdio buffer

Store ‘h’ into

buffer, so that

we do not go to

filesystem yet

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Writing Example

18

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 FILE* fout = fopen("hi.txt", "wb");

 // read "hi" one char at a time

 fwrite(&buf, sizeof(char), 1, fout);

 fwrite(&buf+1, sizeof(char), 1, fout);

 fclose(fout);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C stdio buffer

h

Store ‘i’ into

buffer, so that

we do not go to

filesystem yet

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Writing Example

19

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 FILE* fout = fopen("hi.txt", "wb");

 // read "hi" one char at a time

 fwrite(&buf, sizeof(char), 1, fout);

 fwrite(&buf+1, sizeof(char), 1, fout);

 fclose(fout);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

C stdio buffer

h i

When we call fclose, we

deallocate and flush

the buffer to disk

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Writing Example

20

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 FILE* fout = fopen("hi.txt", "wb");

 // read "hi" one char at a time

 fwrite(&buf, sizeof(char), 1, fout);

 fwrite(&buf+1, sizeof(char), 1, fout);

 fclose(fout);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

21

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

22

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

23

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

24

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

25

int main(int argc, char** argv) {

 char buf[2] = {'h', 'i'};

 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time

 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

Two OS/File system

accesses instead of one

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

26

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading Example

27

int main(int argc, char** argv) {

 char buf[2];

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading Example

28

int main(int argc, char** argv) {

 char buf[2];

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

Arrow signifies what
will be executed next

h i

Read as much as

you can from the

file

Copy out what

was requested

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading Example

29

int main(int argc, char** argv) {

 char buf[2];

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

Arrow signifies what
will be executed next

Get next char

from buffer

No need to go to file!

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading Example

30

int main(int argc, char** argv) {

 char buf[2];

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Buffered Reading Example

31

int main(int argc, char** argv) {

 char buf[2];

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

32

Many small writes

Or only writing a little

Large writes

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the
programs address space

33

int main() {

 if (fork() == 0) {

 printf("hello");

 }

 if (fork() == 0) {

 printf("hello");

 }

 return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the
programs address space

34

int main() {

 if (fork() == 0) {

 printf("hello");

 }

 if (fork() == 0) {

 printf("hello");

 }

 return EXIT_SUCCESS;

}

Process 0

stdio buf

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 1

stdio buf

hello

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the
programs address space

35

int main() {

 if (fork() == 0) {

 printf("hello");

 }

 if (fork() == 0) {

 printf("hello");

 }

 return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the
programs address space

36

int main() {

 if (fork() == 0) {

 printf("hello");

 }

 if (fork() == 0) {

 printf("hello");

 }

 return EXIT_SUCCESS;

}

Process 0

stdio buf

Process 1

stdio buf

hello

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

Process 2

stdio buf

Process 3

stdio buf

hello

hello

hello

Hello is printed 4 times!

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Fork Problem Explained (pt.2)

❖ Why did we get different outputs when printf printed a
newline character after hello?

▪ Only difference was:
vs

❖ All we needed to do to get the expected output was add a
\n. why?

❖ printf prints to stdout and by default stdout is line
buffered. Meaning it flushes the buffer on a newline
character

▪ If we ran ./prog > out.txt (redirect the output), we would get
different output since buffering policy changes.

37

printf("hello"); printf("hello\n");

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

How to flush/modify the cstdio buffer

❖ For C stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ setvbuf

▪ Has a family of related functions like setbuf(), setbuffer(),
setlinebuf();

▪ Can set the stream to be unbuffered or a specified buffer

38

int fflush(FILE* stream);

int setvbuf(FILE* stream, char* buf,

 int mode, size_t size);

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

How to flush POSIX?

❖ When we write to a file with POSIX it is sent to the
filesystem, is it immediately sent to disc? No

▪ Well, we do have the block cache… so it may not be written to
disc

▪ Since all File I/O requests go to the file system, if another process
accesses the same file, then it should see the data even if it is the
block cache and not in disc.

▪ If we lose power though…

39

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

How to flush POSIX to disk

❖ Two functions

▪ Fsync

▪ Flushes all in-core data and metadata to the storage medium

▪ fdatasync

▪ Sends the file data to disk

▪ Does not flush modified metadata unless necessary for data.

❖ C stdio is usually implemented using POSIX
on posix compliant systems
▪ fflush may not necessarily call fsync

40

int fsync(int fd);

int fdatasync(int fd);

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Blank slide

❖ Blank slide

41

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

42

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Locality

❖ I/O Buffering

❖ Caches

43

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology

▪ Vector == ArrayList

▪ List == LinkedList

❖ On Element size from
100,000 -> 500,000

44

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to
access

▪ We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

45

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Memory Hierarchy

46

Each layer can be thought

of as a “cache” of the layer

below

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

47

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on
performance

▪ It is important that data is quick to access to get better CPU
utilization 48

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be
stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

49

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

50

CPU

0:

1:

2:

3:

4:

5:

...

data

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Virtual Address Translation
❖ Programs don’t know about many of things going on

under the hood with memory.they send an address to the
MMU, and the MMU will help get the data

51

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

RAM

Also checks
Caches

Caches

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache Analogy

❖ If we are at home and we are hungry, were do we get
food from?

▪ We get it from our refrigerator!

▪ If the refrigerator is empty, we go to the grocery store

▪ When at the grocery store, we don’t just get what we want right
now, but also get other things we think we want in the near
future (so that it will be in our fridge when we want it)

52

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data
oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

53

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better
utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck:
CPU would have to wait for data to come from memory.

❖ How is data loaded into a Cache?

54

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ We can split memory into 64-byte “lines” or “blocks”(64
bytes on most architectures)

❖ When we access data at an address, we bring the whole
cache line (cache block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!

55

Access this data
Neighboring data brought into the cache

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the CPU to access the same set of
memory locations over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will
likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely
reference memory close to it in the near future.

❖ Caches take advantage of these tendencies to help with
cache management

56

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines
inside it.

❖ When we access data not in the cache, and the cache is
full, we must evict an existing entry.

❖ When we access a line, we can do a quick calculation on
the address to determine which entry in the cache we can
store it in. (Depending on architecture, 1 to 12 possible
slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the
entries a line can be stored in

57

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

LRU (Least Recently Used)

❖ If a cache line is used recently, it is likely to be used again
in the near future

❖ Use past knowledge to predict the future

❖ Replace the cache line that has had the longest time since
it was last used

58

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a
sequence of sorted numbers. To do this, we generate a
random number and insert the number so that it remains
sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly
generate an index and remove that index from the
sequence until it is empty. Would this be faster on a
LinkedList or an ArrayList?

59

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ ArrayList In C++:

60

int main() {

 vector<int> array_list {1, 2, 3};

 // …

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

Elements are next to each
other in memory ☺

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we
understand the memory layout of these data structures

❖ LinkedList In C++:

61

int main() {

 list<int> linked_list {1, 2, 3, 4};

 // …

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

Elements are not next
to each other in memory

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from
spatial complexity (and temporal complexity from being iterated
through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your
default in C++, Rust, etc should be a vector

▪ If you are doing something where performance matters, your best
bet is to experiment try all options and analyze which is better.

62

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object,
you have an instance of that object. If you declare it as a
local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the
memory model is slightly different. Instead, all object
variables are object references, that refer to an object
on the heap

63

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object
variables are object references, that refer to an object on
the heap

64

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Does Caching apply to Java?

❖ I believe so, yes. Doing the same experiment in java got:

❖ Note: did this on
smaller number of
elements.
50,000 -> 100,000

65

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

66

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional
array) of integers, and I want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or
column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

67

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take
advantage of the cache

68

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches
instructions. There is a separate cache for this
▪ which is why you may see something like L1I cache and L1D

cache, for Instructions and Data respectively

❖ Consider the following three fake objects linked in
inheritance

69

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 70

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 3800, Spring 2024L09: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

71

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> la = new ArrayList<A>();

 ArrayList lb = new ArrayList();

 ArrayList<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

	Default Section
	Slide 1: Locality, Buffering, Caches Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Penn-Shell Compatibility
	Slide 5: Poll: how are you?
	Slide 6: Lecture Outline
	Slide 7: Memory Hierarchy
	Slide 8: Principle of Locality
	Slide 9: Numbers Everyone Should Know
	Slide 10: Lecture Outline
	Slide 11
	Slide 12
	Slide 13
	Slide 14: C stdio vs POSIX
	Slide 15: Buffered writing
	Slide 16: Buffered Writing Example
	Slide 17: Buffered Writing Example
	Slide 18: Buffered Writing Example
	Slide 19: Buffered Writing Example
	Slide 20: Buffered Writing Example
	Slide 21: Unbuffered Writing Example
	Slide 22: Unbuffered Writing Example
	Slide 23: Unbuffered Writing Example
	Slide 24: Unbuffered Writing Example
	Slide 25: Unbuffered Writing Example
	Slide 26: Buffered Reading
	Slide 27: Buffered Reading Example
	Slide 28: Buffered Reading Example
	Slide 29: Buffered Reading Example
	Slide 30: Buffered Reading Example
	Slide 31: Buffered Reading Example
	Slide 32: Why NOT Buffer?
	Slide 33: Fork Problem Explained
	Slide 34: Fork Problem Explained
	Slide 35: Fork Problem Explained
	Slide 36: Fork Problem Explained
	Slide 37: Fork Problem Explained (pt.2)
	Slide 38: How to flush/modify the cstdio buffer
	Slide 39: How to flush POSIX?
	Slide 40: How to flush POSIX to disk
	Slide 41: Blank slide
	Slide 42: Poll: how are you?
	Slide 43: Lecture Outline
	Slide 44: Answer:
	Slide 45: Data Access Time
	Slide 46: Memory Hierarchy
	Slide 47: Memory Hierarchy so far
	Slide 48: Processor Memory Gap
	Slide 49: Cache
	Slide 50: Memory (as we know it now)
	Slide 51: Virtual Address Translation
	Slide 52: Cache Analogy
	Slide 53: Cache vs Memory Relative Speed
	Slide 54: Cache Performance
	Slide 55: Cache Lines
	Slide 56: Principle of Locality
	Slide 57: Cache Replacement Policy
	Slide 58: LRU (Least Recently Used)
	Slide 59: Back to the Poll Questions
	Slide 60: Data Structure Memory Layout
	Slide 61: Data Structure Memory Layout
	Slide 62: Poll Question: Explanation
	Slide 63: What about other languages?
	Slide 64: ArrayList in Java Memory Model
	Slide 65: Does Caching apply to Java?
	Slide 66: Poll: how are you?
	Slide 67: Poll: how are you?
	Slide 68: Experiment Results
	Slide 69: Instruction Cache
	Slide 70: Instruction Cache
	Slide 71: Instruction Cache

