
CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Intro to Threads
Computer Operating Systems, Spring 2024

Instructor: Travis McGaha

Head TAs: Nate Hoaglund & Seungmin Han

TAs:

Adam Gorka Haoyun Qin Kyrie Dowling Ryoma Harris

Andy Jiang Jeff Yang Oliver Hendrych Shyam Mehta

Charis Gao Jerry Wang Maxi Liu Tom Holland

Daniel Da Jinghao Zhang Rohan Verma Tina Kokoshvili

Emily Shen Julius Snipes Ryan Boyle Zhiyan Lu

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Administrivia

❖ PennOS:

▪ To be done in groups of 4

▪ Group signup to be released soon

• Group signup due Tuesday next week

• Those who do not form a group will be randomly assigned

• Random assignment will prefer to keep people in pairs (unless you
reach out and specify otherwise)

▪ Specification to be released soon (over the weekend)

❖ Next Lecture (Tuesday 3/19) will be on Zoom only

❖ Thursday (3/21) will be in-person TA led PennOS overview

❖ Tuesday 3/26 & Thurs 3/28 will be on Zoom

2

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns from last lecture?

3

pollev.com/tqm

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking

4

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5

thread

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

6

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

9

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

10

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking

12

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

13

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

14

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

15

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

16

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking

17

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

18

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

19

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

20

Discuss

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

21

Discuss

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda
unsafe if done wrong (we are doing it wrong in this
example), more on this in the next couple lectures

22

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

23

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

24

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the
matrix to check!

▪ Works with threads since they share memory

25

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

26

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads.
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

27

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking

28

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

29

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Search Engine Architecture

30

query
processor

client
index

file

index
file

index
file

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Search Engine (Pseudocode)

31

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextQuery();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 Display(results);

 }

}

Disk I/O

Network

I/O

Network

I/O

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Execution Timeline: a Multi-Word Query

32

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

33

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Execution Timeline: To Scale

34

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multiple (Single-Word) Queries

35

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
#.f -> Display()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Uh-Oh (1 of 2)

36

query
processor

client

client

client

client

client

index
file

index
file

index
file

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Uh-Oh (2 of 2)

37

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

38

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

39

Threads!!!!

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multithreaded Server

40

client

server

accept()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multithreaded Server

41

client

server

pthread_create()

pthread_detach()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multithreaded Server

42

client

server

accept()

client

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multithreaded Server

43

client

client

server

pthread_create()

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multithreaded Server

44

client

client

client

client

client

client
server

shared
data

structures

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

45

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

46

	Default Section
	Slide 1: Intro to Threads Computer Operating Systems, Spring 2024
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Lecture Outline
	Slide 5: Introducing Threads
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Threads
	Slide 10: Single-Threaded Address Spaces
	Slide 11: Multi-threaded Address Spaces
	Slide 12: Lecture Outline
	Slide 13: POSIX Threads (pthreads)
	Slide 14: Creating and Terminating Threads
	Slide 15: What To Do After Forking Threads?
	Slide 16: Thread Example
	Slide 17: Lecture Outline
	Slide 18: Threads vs. Processes
	Slide 19: Threads vs. Processes
	Slide 20: Poll: how are you?
	Slide 21: Poll: how are you?
	Slide 22: Demos:
	Slide 23: Process Isolation
	Slide 24: Parallelism
	Slide 25: Parallelism
	Slide 26: How fast is fork()?
	Slide 27: Context Switching
	Slide 28: Lecture Outline
	Slide 29: Building a Web Search Engine
	Slide 30: Search Engine Architecture
	Slide 31: Search Engine (Pseudocode)
	Slide 32: Execution Timeline: a Multi-Word Query
	Slide 33: What About I/O-caused Latency?
	Slide 34: Execution Timeline: To Scale
	Slide 35: Multiple (Single-Word) Queries
	Slide 36: Uh-Oh (1 of 2)
	Slide 37: Uh-Oh (2 of 2)
	Slide 38: Sequential Can Be Inefficient
	Slide 39: A Concurrent Implementation
	Slide 40: Multithreaded Server
	Slide 41: Multithreaded Server
	Slide 42: Multithreaded Server
	Slide 43: Multithreaded Server
	Slide 44: Multithreaded Server
	Slide 45: Multi-threaded Search Engine (Execution)
	Slide 46: Why Threads?

