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Administrivia

❖ PennOS:

▪ To be done in groups of 4

▪ Group signup to be released soon

• Group signup due Tuesday next week

• Those who do not form a group will be randomly assigned

• Random assignment will prefer to keep people in pairs (unless you 
reach out and specify otherwise)

▪ Specification to be released soon (over the weekend)

❖ Next Lecture (Tuesday 3/19) will be on Zoom only

❖ Thursday (3/21) will be in-person TA led PennOS overview

❖ Tuesday 3/26 & Thurs 3/28 will be on Zoom 
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Poll: how are you?

❖ Any questions, comments or concerns from last lecture?
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pollev.com/tqm
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Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking
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Introducing Threads

❖ Separate the concept of a process from the “thread of 
execution” 

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream 
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it
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Threads vs. Processes

7

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()



CIS 3800, Spring 2024L12: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes
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Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can 
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared 
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads
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Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running 
in the address space

• One PC, stack, SP

▪ That main thread invokes a 
function to create a new thread

• Typically pthread_create()
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Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running 
in the address space

• Original thread (parent) and new 
thread (child)

• New stack created for child thread

• Child thread has its own values of 
the PC and SP

▪ Both threads share the other 
segments (code, heap, globals)

• They can cooperatively modify 
shared data
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Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking
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POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread 
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style
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Creating and Terminating Threads

❖  

▪ Creates a new thread into *thread, with attributes *attr 
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check 
against error constants)

▪ The new thread runs start_routine(arg)
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int pthread_create(

        pthread_t* thread,

        const pthread_attr_t* attr,

        void* (*start_routine)(void*), 

        void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer! 

Takes & returns void* 

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create
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What To Do After Forking Threads?

❖  

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval
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int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child 

thread to exit, gets the child’s 

return value, and child thread is 

cleaned up

start_routine

continues

parentcreate join
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Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel
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Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking
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Threads vs. Processes
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Threads vs. Processes
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Poll: how are you?

❖ What does this print?
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Discuss
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Poll: how are you?

❖ What does this print?
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Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a 
global, it is seen by other threads

▪ Processes have separate address spaces, incrementing a global in 
one process does not increment it for other processes

❖ NOTE: sharing data between threads is actually kinda 
unsafe if done wrong (we are doing it wrong in this 
example), more on this in the next couple lectures
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Process Isolation

❖ Process Isolation is a set of mechanisms implemented to 
protect processes from each other and protect the kernel 
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()
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Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

24
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Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count 
the number of odd integers in the matrix

❖ I can speed this up by giving each thread a part of the 
matrix to check!

▪ Works with threads since they share memory

25

Diminishing returns

After 4 threads, no 

gain in speed

why? Machine run on

only has 4 cores
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How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on 
hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows
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Context Switching

❖ Processes are considered “more expensive” than threads. 
There is more overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context 
switching

▪ Cannot easily share memory between processes – typically 
communicate through the file system
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Lecture Outline

❖ Threads High Level

❖ Pthreads

❖ Threads vs processes

❖ Threads & Blocking
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Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set
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Search Engine Architecture

30
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Search Engine (Pseudocode)
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doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextQuery();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    Display(results);

  }

}

Disk I/O

Network 

I/O

Network 

I/O
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Execution Timeline: a Multi-Word Query
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)
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Execution Timeline: To Scale
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Multiple (Single-Word) Queries
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Uh-Oh (1 of 2)
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Uh-Oh (2 of 2)
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast 
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.
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A Concurrent Implementation 

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests 
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between 
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

39

Threads!!!!
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server
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Multi-threaded Search Engine (Execution)
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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