
CIS 3800
Penn-OS Lecture

Spring 2024

1

Milestone and Demo
Milestone 0: Due by Mar. 25th (TA Meeting by Mar. 29th)

Meeting with group and TA
General discussion regarding the design of your project
Pass/Fail grade

Milestone 1: Apr. 9th (TA Meeting Apr 9-12)
Meeting with group and TA
Autograded Standalone PennFAT, Scheduler & Logging Demo
Pass/Fail grade

Due: Submission Apr 22nd / Demos Latest May 8th
Present your PennOS to TA
Demo plan to be released at a later date 2

Development Grading Breakdown

5% Documentation

45% Kernel/Scheduler

35% File System

15% Shell

3

Companion Document/README

Required to provide a Companion Document
Consider this like APUE or K-and-R
Describes how OS is built and how to use it

README

Describes implementation and design choices

4

Lecture Outline

• PennOS Overview

• PennFAT file system

• Scheduling & Process Life Cycle

• spthreads

• PennOS Shell

• Demo

5

PennOS Overview

6

Projects So Far

• Penn Shredder

○ Mini Shell with Signal Handling

• Penn Shell

○ Redirections and Pipelines

○ Process Groups and Terminal Control

○ Job Control

You will be implementing major user-level calls in PennOS

7

PennOS

Kernel Shell

$ sleep 2
...

SchedulerI/OPennFAT
Filesystem

8

PennOS as a GuestOS

PennFAT

Kernel Shell

$ sleep
2

...

Sched
ulerI/O

PennOS

Host Operating System

LINUX Kernel

Scheduler

I/O

bash

X11

etc

Single Process

9

User Land and Kernel Land

10

User Land - What an actual user interacts with

Kernel Land - What happens ‘under the hood’

System Call - The API calls to connect user land
with kernel land

User Land and Kernel Land

Kernel Shell

$ sleep 2
...

SchedulerI/OPennFAT
Filesystem

11
More on this later!!

PennFAT File System

12

What is a File System?

• A File System is a collection of data structures and
methods an operating system uses to structure and
organize data and allow for consistent storage and
retrieval of information
• Basic unit: a file

• A file (a sequence of data) is stored in a file system as
a sequence of data-containing blocks

13

What is a FAT?

• FAT stands for file allocation table, which is an
architecture for organizing and referring to files and
blocks in a file system.

• There exist many methods for organizing file
systems; modern operating systems support only their
‘native’ file system, for example:
• FAT (DOS, Windows)
• Mac OS X
• ext{1,2,3,4} (Linux)
• NTFS (Windows)

14

FAT

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

How can we read file 11?
Find Block 11, 14, and 15?

Each value in the
FAT table refers to a

block number

15

File System Layout
Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

FAT (Before Blocks)

Block 1

Block 2

Block 3

Block 4

Block 5

{ Offset 0
mmap() to memory

16

File Alignment

Block 11 Block 14 Block 15

Files are distributed across blocks

lseek(n, F_SEEK_SET, 60)

lseek(n, F_SEEK_SET, block_size - 1)

lseek(n, F_SEEK_SET, block_size * 2 + 100)

17

Adjusting File Size

write(n, buffer, block_size)

Block 11

Physical Link

...

11

12

13

14

15

...

...

14

13

-1

15

-1

...

Block 14 Block 15 Block 22

...

14

13

-1

15

22

...

-1

…

18

...

11

12

13

14

15

...

22

…

PennFAT Specification

19

File System
• Array of unsigned, little endian, 16-bit entries
• mkfs NAME BLOCKS_IN_FAT BLOCK_SIZE

• FAT region and DATA region

Layout

Region Size Contents
FAT Region block size * number of blocks in FAT File Allocation Table
Data Region block size * (number of FAT entries – 1) directories and files

FAT DATA

PennFAT FileSystem
2 bytes

FAT Region
• FAT entry size: 2 bytes
• First entry – special entry for FAT and block sizes

- LSB: size of each block
- MSB: number of blocks in FAT

LSB Block Size
0 256
1 512
2 1,024
3 2,048
4 4,096

FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in
FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128
0x0101 1 1 512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.
Why?

Other entries of FAT

fat[i] (i > 0) Data region block type
0 free block

0xFFFF last block of file
[2, number of FAT entries) next block of file

FAT first-entry examples

fat[0] MSB LSB Block Size Blocks in
FAT

FAT Size FAT Entries

0x0100 1 0 256 1 256 128
0x0101 1 1 512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536*

* fat[65535] is undefined.
Why?

- 0xFFFF is reserved for last block of file

Example FAT

Index Link Notes
0 0x2004 32 blocks, 4KB block size
1 0xFFFF Root directory
2 4 File A starts, links to block 4
3 7 File B starts, links to block 7
4 5 File A continues to block 5
5 0xFFFF Last block of file A
6 18 File C starts, links to block 18
7 17 File B continues to block 17
8 0x0000 Free block

Data Region
- Each FAT entry represents a file block in data region
- Data Region size = block size * (# of FAT entries - 1)

• b/c first FAT entry (fat[0]) is metadata

- block numbering begins at 1:
• block 1 – always the first block of the root directory
• other blocks – data for files, additional blocks of the root

directory, subdirectories (extra credit)

What is a directory?

• A directory is a file consisting of entries that describe
the files in the directory.

• Each entry includes the file name and other
information about the file.

• The root directory is the top-level directory.

28

Directory entry
Fixed size of 64 bytes each

• file name: 32 bytes (null terminated)
- legal characters: [A-Za-z0-9._-]

(POSIX portable filename character set)
- first byte special values:

name[0] Description
0 end of directory
1 deleted entry; the file is also deleted
2 deleted entry; the file is still being used

Directory entry (cont.)
• file size: 4 bytes
• first block number: 2 bytes (unsigned)
• file type: 1 byte

Value File Type
0 unknown
1 regular file
2 directory
4 symbolic link (extra credit)

Directory entry (cont.)
• file permission: 1 byte

• timestamp: 8 bytes returned by time(2)
• remaining 16 bytes: reserved for E.C

Value Permission
0 none
2 write only
4 read only
5 read and executable
6 read and write
7 read, write, and executable

0x2002
0xFFFF

fat[0]
fat[1]

FAT
Region

:

:
:

Data
Region

32
blocks

1024
bytes

1024
bytes

1024
bytes

1024
bytes

Block 1

Block 2

first block of
root directory

2 bytes

2 bytes

0

:
:

16,383
blocks

PennFAT after
initial formatting0x0000

0x0000

fat[0] = 0x2002
- 32 blocks of 1024 bytes in FAT

First block of Data Region is first
block of root directory

Correspondingly, fat[1] refers to that
Block 1, which ends there. So it has
value of 0xFFFF

0x2002
0xFFFF

fat[0]
fat[1]

FAT
Region

:

:
:

Data
Region

32
blocks

1024
bytes

1024
bytes

1024
bytes

1024
bytes

Block 1

Block 2

first block of
root directory

2 bytes

2 bytes

:
:

16,383
blocks

PennFAT after
creating an
empty file

32 bytes

0x00000000 4 bytes

:
:64

bytes

16
directory
entries

Block 1

64
bytes

0

:
:

8 bytes

b a r \0

0x0000

0x0000

0x2002
0xFFFF

fat[0]
fat[1]

FAT
Region

:

:
:

Data
Region

32
blocks

1024
bytes

1024
bytes

1024
bytes

1024
bytes

Block 1

Block 2

first block of
root directory

2 bytes

2 bytes

:
:

16,383
blocks

PennFAT after
writing to the file

32 bytes

0x00000006 4 bytes

64
bytes

16
directory
entries

Block 1

0xFFFF 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64
bytes

0

:
:

0x01 1 byte
0x06 1 byte

8 bytes

b a r \0

0x0000

0x2002
0xFFFF

fat[0]
fat[1]

FAT
Region

:

:
:

Data
Region

32
blocks

1024
bytes

1024
bytes

1024
bytes

1024
bytes

Block 1

Block 2

first block of
root directory

2 bytes

2 bytes

:
:

16,383
blocks

PennFAT after
removing the file

b a r \0 32 bytes

0x00000006 4 bytes

64
bytes

16
directory
entries

Block 1

0x0000 2 bytesfat[2]

h e l l o \n

0x0002 2 bytes

64
bytes

0

:
:

0x01 1 byte
0x06 1 byte

8 bytes

1

0x0000

Standalone PennFAT
• Milestone 1
• Implementation of kernel-level functions

(k_functions)
• Simple shell for reading, parsing, and executing

File system modification routines
• System-wide Global File Descriptor Table

Kernel-Level Functions

• Interacting directly with the filesystem you created
• Also interacts directly with the system-wide Global

FD Table
• These API should be specific to PennFAT

• No other filesystem format can use this

• k_write(int fd, const char* str, int n)
• Access the file associated with file descriptor fd

• Access through the FD table

• Write up to n bytes of str
• literally modify the binary filesystem you created. This should be

loaded in memory, so you can modify the in-memory array

Standalone Routines

• Special Commands
• mfks, mount, unmount
• These can be implemented using C System Calls

• Standard Routines
• touch, mv, rm, cat, cp, chmod, ls
• These should ONLY use k_functions unless

interacting with the HOST filesystem

Your filesystem: PennFAT binary file you created
HOST filesystem: Your docker filesystem

Standalone Routines

cat FILE … [-w OUTPUT_FILE]
- get input from multiple FILE(s), output to stdout

or OUTPUT_FILE if specified

The following would be logical flow of cat
k_open(FILEs)
k_read(FILEs)
k_write(stdout / OUTPUT_FILE)

Standalone Routines

cp [-h] SOURCE DEST
- copy contents from SOURCE to DEST. If -h flag exists,

copy from HOST fileystem

The following would be logical flow of cp
If -h flag:

read(SOURCE) ← Note this is C sys-call
k_write(DEST)

else
k_read(SOURCE)
k_write(DEST)

Kernel
Scheduling & Process Life Cycle

41

Scheduling in PennOS

PennFAT

Kernel Shell

#>
sleep 2

...

Sched
ulerI/O

PennOS

shell

busy

ps

Scheduler

Queue 0 Queue 1 Queue 2

Exponential Relationship

Queue 0 scheduled 1.5 times more
frequently than Queue 1

Queue 1 scheduled 1.5 times more
frequent than Queue 2

Round Robin within Queue

busy

sleep

42

spthread’s

Process Statuses

Running

Blocked

Stopped

Zombied

Orphaned

43

Process Life Cycle

CREATE

ZOMBIE

ORPHAN

WAITED

Termination

44

Running
↓

Blocked
↓

Stopped
↓

Running
↓

Stopped
↓

Running
↓
…

Termination

PennOS Process Life Cycle

CREATE

ZOMBIE

ORPHAN

Termination

45

Running
↓

Blocked
↓

Stopped
↓

Running
↓

Stopped
↓

Running
↓
…

WAITED

Terminations_spawn

s_kill()
Ctrl-Z
etc.

return;
s_exit()
s_kill()
Ctrl-C
etc.

s_waitpid()

Store in zombie queue
until reaped by parent

Process Control Block (PCB)

46

typedef struct pcb {

 pid_t pid;

 int foo;

 char *bar;

} pcb_t;

Programming with spthread

47

First, what is pthread?

● User-level thread management API
● Isolate code execution within distinct threads

○ Run funcA in threadA, funcB in threadB, etc.
● Resource sharing (within same process space)
● Concurrent execution

Pros: efficient, lightweight, simple

48

thread 1

thread 2

How does pthread work?

49

thread 3

main thread

pthread_create(...)

t=0

pthread_join(...)

pthread_cancel(...)

What is spthread?

● Wrapper around pthread, provided by us
Provides additional tooling to:
● Create, then immediately suspend the thread
● Suspend a thread
● Continue (unsuspend) a thread

50

spthread_t new_thread;

spthread_create(&new_thread, NULL, routine, argv);

spthread_continue(new_thread);

spthread_suspend(new_thread);

51

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include "./spthread.h"

void hello_world() {

 printf("Hello World\n");

}

int main(void) {

 spthread_t hello_thread;

 spthread_create(&hello_thread, NULL, hello_world, NULL);

 spthread_continue(hello_thread);

 spthread_join(hello_thread, NULL);

}

“Hello-World”: a brief tour

52

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include "./spthread.h"

void sleep_f(int t) {

 while(1) {

 printf("zzzzzzzz\n");

 sleep(t);

 }

}

int main(void) {

 spthread_t sleep_thread;

 int i = 1;

 spthread_create(&sleep_thread, NULL, sleep_f, i);

 spthread_continue(sleep_thread);

 sleep(4);

 spthread_suspend(sleep_thread);

 printf("right here\n");

 sleep(2);

 spthread_continue(sleep_thread);

 spthread_continue(sleep_thread);

 sleep(2);

 spthread_cancel(sleep_thread);

 printf("after sleep\n");

 spthread_join(sleep_thread, NULL);

}

“Sleep”: a brief tour

Using spthread for scheduling

● Leverage suspend + continue to execute one
spthread at a time

53

shell

cat

shell

busy

shell

ps

shell

cat

shell

busy

Priority
Level

0

1

2

1 quantum (100 ms)

Misc: Function Pointers

54

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

return type parameter type(s)

void* fun_function(void* args) {

 char** actual_args = (char**)args;

 // ...

 return NULL;

}

void some_helper(void *(*func_ptr)(void*)) {

 char* msgs[] = {"turtle", "turtle", NULL};

 spthread_t thread;

 spthread_create(&thread, NULL, func_ptr, (void*) &msgs);

}

some_helper(fun_function);

function pointer name

PennOS Shell

55

Shell Requirements

Synchronous Child Waiting

Redirection (no pipelines)

Parsing

Terminal Signaling

Terminal Control

56

Shell Functions

Basic interaction with PennOS

Two types:
Functions that run as separate process
Functions that run as shell sub-routines

57

Examples of Built-ins that Run as a
Process

cat
sleep
busy
ls
touch
mv
cp
rm
ps

58

Examples of Built-ins that Run as a
Subroutine

nice

nice_pid

man

bg

fg

jobs

logout

59

Final Touches: Error Handling
- errno.h, u_perror
- Have global ERRNO macros
- Call u_perror for PennOS system call errors like
s_open, s_spawn

- Call perror(3) for any host OS System call error
like malloc(3) or open(2)

Data like PCBs, queues, etc.

k_functions:

k_open, k_read, k_write, k_close,
k_unlink, k_lseek, k_ls, …

k_proc_create, k_proc_cleanup

Shell Built-ins:
cat, sleep, busy, echo, ls,
touch, mv, cp, rm, chmod,
ps, kill, zombify, orphanify

Shell Routines:
nice, nice_pid, man, bg, fg,
jobs, logout

Terminal

Shell User Land C System Calls

s_functions:

s_open, s_read, s_write, s_close,
s_unlink, s_lseek, s_ls, …

s_spawn, s_waitpid, s_kill, s_exit,
…

open(2), read(2), write(2),
lseek(2), malloc(2), …

Kernel Land

Has access

No access

Has access

H
as access

Keeping the Abstraction!

PennOS System Calls

PennOS Kernel-Level
Functions

u_functions:

u_perror

H
as access

N
o access

No access

Final Touches: Shell Scripts
$ echo echo line1 > script

$ echo echo line2 >> script

$ cat script

echo line1

echo line2

$ chmod +x script

$ script > out

$ cat out

line1

line2

script

echo line1
echo line2

Demo

63

Questions?

64

